【題目】已知函數(shù)f(x)=|x﹣a|+|x+2|.
(1)若a=1.解不等式f(x)≤x2﹣1;
(2)若a>0,b>0,c>0.且f(x)的最小值為4﹣b﹣c.求證:.
【答案】(1){x|x≤﹣2或x≥1}(2)證明見解析
【解析】
(1)對(duì)絕對(duì)值函數(shù)進(jìn)行分段討論,解不等式即可;
(2)求出的最小值,得到,利用柯西不等式證明即可.
(1)當(dāng)a=1時(shí),f(x)=|x﹣1|+|x+2|,
當(dāng)x≤﹣2時(shí),﹣2x﹣1≤x2﹣1,得x2+2x≥0,所以x≤﹣2;
當(dāng)﹣2<x<1時(shí),3≤x2﹣1,得x2≥4,無解
當(dāng)x≥1時(shí),由2x+1≤x2﹣1,得x2﹣2x﹣2≥0,得x≥1,
綜上,不等式的解集為{x|x≤﹣2或x≥1};
(2)證明:
因?yàn)?/span>f(x)=|x﹣a|+|x+2|≥|x﹣a﹣x﹣2|=|a+2|=a+2=4﹣b﹣c,
得a+b+c=2,
所以2,
當(dāng)且僅當(dāng)a+b=c=1時(shí)成立,
故原命題得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元前世紀(jì)的畢達(dá)哥拉斯是最早研究“完全數(shù)”的人.完全數(shù)是一種特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.若從集合中隨機(jī)抽取兩個(gè)數(shù),則這兩個(gè)數(shù)中有完全數(shù)的概率是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(t為參數(shù)),直線過點(diǎn)且傾斜角為,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,取相同的單位長度建立極坐標(biāo)系.
(1)寫出曲線C的極坐標(biāo)方程和直線的參數(shù)方程;
(2)若直線l與曲線C交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個(gè)平面互相垂直,FB∥AE且FB=2EA.
(1)證明:平面EFD⊥平面ABFE;
(2)若AB=2,求多面體ABCDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓的左右頂點(diǎn),點(diǎn)為橢圓上一點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,且.
(1)若橢圓經(jīng)過圓的圓心,求橢圓的方程;
(2)在(1)的條件下,若過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足(為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax,其中a為實(shí)數(shù).
(1)求出f(x)的單調(diào)區(qū)間;
(2)在a<1時(shí),是否存在m>1,使得對(duì)任意的x∈(1,m),恒有f(x)+a>0,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以A,B,C,D,E,F為頂點(diǎn)的多面體中,四邊形是菱形,
(1)求證:平面ABC⊥平面ACDF
(2)求平面AEF與平面ACE所成的銳二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地在國慶節(jié)天假期中的樓房認(rèn)購量(單位:套)與成交量(單位:套)的折線圖如圖所示,小明同學(xué)根據(jù)折線圖對(duì)這天的認(rèn)購量與成交量作出如下判斷:①成交量的中位數(shù)為;②認(rèn)購量與日期正相關(guān);③日成交量超過日平均成交量的有天,則上述判斷中正確的個(gè)數(shù)為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com