已知直線m,n與平面α,β,給出下列三個(gè)命題:
①若m∥α,n∥α,則m∥n;
②若m∥α,n⊥α,則n⊥m;
③若m⊥α,m∥β,則α⊥β.
其中真命題的個(gè)數(shù)是______個(gè)
2
解析試題分析:對(duì)于空間中直線與平面之間的位置關(guān)系,熟練掌握空間線面關(guān)系的判定方法。
當(dāng)m∥α,n∥α,時(shí),m與n可能平行、可能異面也可能相交,故①錯(cuò)誤;
m∥α,n⊥α?xí)r,存在直線l?α,使m∥l,則n⊥l,也必有n⊥m,故②正確;
m⊥α,m∥β時(shí),直線l?β,使l∥m,則n⊥β,則α⊥β,故③正確;
故選C
考點(diǎn):本試題主要是考查了空間中線線平行和線線垂直的判定,以及面面垂直的判定問(wèn)題。
點(diǎn)評(píng):熟練掌握這些線線平行的判定定理和垂直的判定定理,以及面面垂直的定理,是解決該試題的關(guān)鍵。屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知一顆粒子等可能地落入如圖所示的四邊形ABCD內(nèi)的任意位置,如果通過(guò)大量的實(shí)驗(yàn)發(fā)現(xiàn)粒子落入△BCD內(nèi)的頻率穩(wěn)定在附近,那么點(diǎn)A和點(diǎn)C到直線BD的距離之比約為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知平行六面體ABCD-A1B1C1D1中,∠A1AD=∠A1AB=∠BAD=60°,AA1=AB=AD=1,E為A1D1的中點(diǎn)。
給出下列四個(gè)命題:①∠BCC1為異面直線與CC1所成的角;②三棱錐A1-ABD是正三棱錐;③CE⊥平面BB1D1D;④;⑤||=.其中正確的命題有_____________.(寫(xiě)出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知直線⊥平面,直線m平面,有下列命題:
①∥⊥m; ②⊥∥m;
③∥m⊥; ④⊥m∥.
其中正確命題的序號(hào)是 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
將一幅斜邊長(zhǎng)相等的直角三角板拼接成如圖所示的空間圖形,其中AD=BD=,∠BAC=30°,若它們的斜邊AB重合,讓三角板ABD以AB為軸轉(zhuǎn)動(dòng),則下列說(shuō)法正確的是 .
①當(dāng)平面ABD⊥平面ABC時(shí),C、D兩點(diǎn)間的距離為;
②在三角板ABD轉(zhuǎn)動(dòng)過(guò)程中,總有AB⊥CD;
③在三角板ABD轉(zhuǎn)動(dòng)過(guò)程中,三棱錐D-ABC體積的最大值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
夾在的二面角內(nèi)的一個(gè)球與二面角的兩個(gè)面的切點(diǎn)到棱的距離都是6,則這個(gè)球的半徑為_(kāi)______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
正四棱錐的側(cè)棱長(zhǎng)為,底面邊長(zhǎng)為,為中點(diǎn),則異面直線與所成的角是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com