【題目】設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b∈R)滿足條件:①當(dāng)x∈R時(shí),f(x)的最大值為0,且f(x﹣1)=f(3﹣x)成立;②二次函數(shù)f(x)的圖象與直線y=﹣2交于A、B兩點(diǎn),且|AB|=4
(Ⅰ)求f(x)的解析式;
(Ⅱ)求最小的實(shí)數(shù)n(n<﹣1),使得存在實(shí)數(shù)t,只要當(dāng)x∈[n,﹣1]時(shí),就有f(x+t)≥2x成立.
【答案】解:(Ⅰ)由f(x﹣1)=f(3﹣x)可知函數(shù)f(x)的對(duì)稱軸為x=1,
由f(x)的最大值為0,可假設(shè)f(x)=a(x﹣1)2 . (a<0)
令a(x﹣1)2=﹣2,x=1,則易知2=4,a=﹣.
所以,f(x)=﹣(x﹣1)2 .
(Ⅱ)由f(x+t)≥2x可得,-(x﹣1+t)2≥2x,即x2+2(t+1)x+(t﹣1)2≤0,
解得﹣t﹣1-2≤x,
又f(x+t)≥2x在x∈[n,﹣1]時(shí)恒成立,
可得由(2)得0≤t≤4.
令g(t)=﹣t﹣1﹣2,易知g(t)=﹣t﹣1﹣2單調(diào)遞減,
所以,g(t)≥g(4)=﹣9,
由于只需存在實(shí)數(shù),故n≥﹣9,則n能取到的最小實(shí)數(shù)為﹣9.
此時(shí),存在實(shí)數(shù)t=4,只要當(dāng)x∈[n,﹣1]時(shí),就有f(x+t)≥2x成立.
【解析】(Ⅰ)根據(jù)題意可假設(shè)f(x)=a(x﹣1)2 . (a<0),令a(x﹣1)2=﹣2,x=1 , 求解即可得出解析式.
(Ⅱ)利用不等式解得﹣t﹣1-2≤x , 又f(x+t)≥2x在x∈[n,﹣1]時(shí)恒成立,轉(zhuǎn)化為令g(t)=﹣t﹣1﹣2 , 易知g(t)=﹣t﹣1﹣2單調(diào)遞減,
所以,g(t)≥g(4)=﹣9,得出n能取到的最小實(shí)數(shù)為﹣9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右頂點(diǎn)為,點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn),且,則橢圓的離心率的取值范圍為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的四棱錐S﹣ABCD中,SA⊥底面ABCD,∠DAB=∠ABC=90°,SA=AB=BC=a,AD=3a(a>0),E為線段BS上的一個(gè)動(dòng)點(diǎn).
(1)證明:DE和SC不可能垂直;
(2)當(dāng)點(diǎn)E為線段BS的三等分點(diǎn)(靠近B)時(shí),求二面角S﹣CD﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),且f′(x)>2f(x)(x∈R),f()=e(e為自然對(duì)數(shù)的底數(shù)),則不等式f(lnx)<x2的解集為( 。
A.(0,)
B.(0,)
C.( , )
D.( , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在各項(xiàng)均為正數(shù)的等比數(shù)列中,,且,,成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足,為數(shù)列的前項(xiàng)和. 設(shè),當(dāng)最大時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S4=40,Sn=210,Sn-4=130,則n=( )
A.12 B.14 C.16 D.18
【答案】B
【解析】Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn==210,得n=14.
【題型】單選題
【結(jié)束】
9
【題目】等比數(shù)列{an}是遞減數(shù)列,前n項(xiàng)的積為Tn,若T13=4T9,則a8a15=( )
A. 2 B. ±2 C. 4 D. ±4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(1)=0,當(dāng)x<0時(shí),xf′(x)+f(x)>0,則使得f(x)<0成立的x的取值范圍是( 。
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中, 面, 是平行四邊形, , ,點(diǎn)為棱的中點(diǎn),點(diǎn)在棱上,且,平面與交于點(diǎn),則異面直線與所成角的正切值為__________.
【答案】
【解析】
延長(zhǎng)交的延長(zhǎng)線與點(diǎn)Q,連接QE交PA于點(diǎn)K,設(shè)QA=x,
由,得,則,所以.
取的中點(diǎn)為M,連接EM,則,
所以,則,所以AK=.
由AD//BC,得異面直線與所成角即為,
則異面直線與所成角的正切值為.
【題型】填空題
【結(jié)束】
17
【題目】在極坐標(biāo)系中,極點(diǎn)為,已知曲線: 與曲線: 交于不同的兩點(diǎn), .
(1)求的值;
(2)求過點(diǎn)且與直線平行的直線的極坐標(biāo)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com