(本題滿分15分) 如圖,橢圓C: x2+3y2=3b2 (b>0).
(Ⅰ) 求橢圓C的離心率;
(Ⅱ) 若b=1,A,B是橢圓C上兩點,且| AB | =,求△AOB面積的最大值.
(Ⅰ)解:由x2+3y2=3b2 得,
所以e====.
(Ⅱ)解:設A(x1,y1),B(x2,y2),△ABO的面積為S.
如果AB⊥x軸,由對稱性不妨記A的坐標為(,),此時S==;
如果AB不垂直于x軸,設直線AB的方程為y=kx+m,
由 得x2+3(kx+m) 2=3,
即 (1+3k2)x2+6kmx+3m2-3=0,又Δ=36k2m2-4(1+3k2) (3m2-3)>0,
所以 x1+x2=-,x1x2=,
(x1-x2)2=(x1+x2)2-4 x1x2=, ①
由 | AB |=及 | AB |=得
(x1-x2)2=, ②
結合①,②得m2=(1+3k2)-.又原點O到直線AB的距離為,
所以S=,
因此S2==[-]=[-(-2)2+1]
=-(-2)2+≤,
故S≤.當且僅當=2,即k=±1時上式取等號.又>,故S max=.
解析
科目:高中數學 來源: 題型:解答題
在直角坐標系上取兩個定點,再取兩個動點,且.
(Ⅰ)求直線與交點的軌跡的方程;
(Ⅱ)已知點()是軌跡上的定點,是軌跡上的兩個動點,如果直線的斜率與直線的斜率滿足,試探究直線的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分15分) 設拋物線C1:x2=4y的焦點為F,曲線C2與C1關于原點對稱.
(Ⅰ) 求曲線C2的方程;
(Ⅱ) 曲線C2上是否存在一點P(異于原點),過點P作C1的兩條切線PA,PB,切點A,B,滿足| AB |是 | FA | 與 | FB | 的等差中項?若存在,求出點P的坐標;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,曲線C1是以原點O為中心,F1、F2為焦點的橢圓的一部分,曲線C2是以原點O為頂點,F2為焦點的拋物線的一部分,是曲線C1和C2的交點.
(Ⅰ)求曲線C1和C2所在的橢圓和拋物線的方程;
(Ⅱ)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點,若G為CD中點,H為BE中點,問是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓C:(a〉b>0)的左焦點為,橢圓過點P()
(1)求橢圓C的方程;
(2)已知點D(l,0),直線l:與橢圓C交于A、B兩點,以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在圓上任取一點,過點作軸的垂線段,為垂足.當點在圓上運動時,線段的中點形成軌跡.
(1)求軌跡的方程;
(2)若直線與曲線交于兩點,為曲線上一動點,求面積的最大值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)已知橢圓,的離心率為,直線與以原點為圓心,以橢圓的短半軸長為半徑的圓相切。
、求橢圓的方程;
、過點的直線(斜率存在時)與橢圓交于、兩點,設為橢圓與軸負半軸的交點,且,求實數的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,曲線是以原點O為中心、為焦點的橢圓的一部分,曲線是以O為頂點、為焦點的拋物線的一部分,A是曲線和的交點且
為鈍角.
(1)求曲線和的方程;
(2)過作一條與軸不垂直的直線,分別與曲線依次交于B、C、D、E四點,若G為CD中點、H為BE中點,問是否為定值?若是求出定值;若不是說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com