(本題滿分15分) 設(shè)拋物線C1:x2=4y的焦點為F,曲線C2與C1關(guān)于原點對稱.
(Ⅰ) 求曲線C2的方程;
(Ⅱ) 曲線C2上是否存在一點P(異于原點),過點P作C1的兩條切線PA,PB,切點A,B,滿足| AB |是 | FA | 與 | FB | 的等差中項?若存在,求出點P的坐標;若不存在,請說明理由
科目:高中數(shù)學 來源: 題型:解答題
已知P為曲線C上任一點,若P到點F的距離與P到直線距離相等
(1)求曲線C的方程;
(2)若過點(1,0)的直線l與曲線C交于不同兩點A、B,
(I)若,求直線l的方程;
(II)試問在x軸上是否存在定點E(a,0),使恒為定值?若存在,求出E的坐標及定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)橢圓的左、右焦點分別為,上頂點為,離心率為,在軸負半軸上有一點,且
(Ⅰ)若過三點的圓恰好與直線相切,求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)橢圓的左、右焦點分別為,上頂點為,離心率為,在軸負半軸上有一點,且
(1)若過三點的圓恰好與直線相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點作斜率為的直線與橢圓C交于兩點,在軸上是否存在點,使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分15分) 如圖,橢圓C: x2+3y2=3b2 (b>0).
(Ⅰ) 求橢圓C的離心率;
(Ⅱ) 若b=1,A,B是橢圓C上兩點,且| AB | =,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)如圖,在平面直角坐標系xOy中,橢圓C的中心在坐標原點O,右焦點為F.若C的右準線l的方程為x=4,離心率e=.
(1)求橢圓C的標準方程;
(2)設(shè)點P為直線l上一動點,且在x軸上方.圓M經(jīng)過O、F、P三點,求當圓心M到x軸的距離最小時圓M的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com