在直角坐標系上取兩個定點,再取兩個動點,且.
(Ⅰ)求直線交點的軌跡的方程;
(Ⅱ)已知點()是軌跡上的定點,是軌跡上的兩個動點,如果直線的斜率與直線的斜率滿足,試探究直線的斜率是否是定值?若是定值,求出這個定值,若不是,說明理由.

解:(Ⅰ)軌跡M的方程為
(Ⅱ)直線EF的斜率為定值,其值為

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知橢圓的一個焦點與拋物線的焦點重合,P為橢圓與拋物線的一個公共點,且|PF|=2,傾斜角為的直線過點.
(1)求橢圓的方程;
(2)設(shè)橢圓的另一個焦點為,問拋物線上是否存在一點,使得關(guān)于直線對稱,若存在,求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

雙曲線的離心率為2,坐標原點到直線AB的距離為,其中A,B.
(1)求雙曲線的方程;
(2)若B1是雙曲線虛軸在軸正半軸上的端點,過B1作直線與雙曲線交于兩點,求時,直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知動點與平面上兩定點、連線的斜率的積為定
.
(1)求動點的軌跡方程;(2)設(shè)直線與曲線交于、兩點,當||=時,求直線的方程. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知直線上有一個動點,過點作直線垂直于軸,動點上,且滿足
(為坐標原點),記點的軌跡為.
(1)求曲線的方程;
(2)若直線是曲線的一條切線, 當點到直線的距離最短時,求直線的方程. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(10分)拋物線上有兩點(0為坐標原點)
(1)求證:  (2)若,求AB所在直線方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知P為曲線C上任一點,若P到點F的距離與P到直線距離相等
(1)求曲線C的方程;
(2)若過點(1,0)的直線l與曲線C交于不同兩點A、B,
(I)若,求直線l的方程;
(II)試問在x軸上是否存在定點E(a,0),使恒為定值?若存在,求出E的坐標及定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分15分) 如圖,橢圓C: x2+3y2=3b(b>0).
(Ⅰ) 求橢圓C的離心率;
(Ⅱ) 若b=1,A,B是橢圓C上兩點,且| AB | =,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

橢圓的長軸長是短軸長的兩倍,且過點
(1)求橢圓的標準方程;
(2)若直線與橢圓交于不同的兩點,求的值.

查看答案和解析>>

同步練習冊答案