已知雙曲線C的中心在原點,拋物線
的焦點是雙曲線C的一個焦點,且雙曲線經(jīng)過點
,又知直線
與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若
,求實數(shù)k值.
(1)
(2)
試題分析:(1)拋物線的焦點是(
),則雙曲線的
.………………1分
設雙曲線方程:
…………………………2分
解得:
…………………………5分
(2)聯(lián)立方程:
當
……………………7分(未寫△扣1分)
由韋達定理:
……………………8分
設
代入可得:
,檢驗合格.……12分
點評:第一小題利用定義首先求出2a也比較簡單
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
動圓
經(jīng)過定點
,且與直線
相切。
(1)求圓心
的軌跡
方程;
(2)直線
過定點
與曲線
交于
、
兩點:
①若
,求直線
的方程;
②若點
始終在以
為直徑的圓內(nèi),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
雙曲線
的一條漸近線的傾斜角為
,離心率為
,則
的最小值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
是橢圓
上的一動點,且
與橢圓長軸兩頂點連線的斜率之積最小值為
,則橢圓離心率為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知拋物線
上的焦點
,點
在拋物線上,點
,則要使
的值最小的點
的坐標為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓的一個頂點和兩個焦點構(gòu)成等腰直角三角形,則此橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題14分)已知橢圓
的離心率為
,以原點為圓心,橢圓短半軸長為半徑的圓與直線
相切,
分別是橢圓的左右兩個頂點,
為橢圓
上的動點.
(1)求橢圓的標準方程;
(2)若
與
均不重合,設直線
的斜率分別為
,求
的值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
雙曲線虛軸的一個端點為M,兩個焦點為F
1,F(xiàn)
2,
,則雙曲線離心率為
查看答案和解析>>