精英家教網 > 高中數學 > 題目詳情
(本小題14分)已知橢圓的離心率為,以原點為圓心,橢圓短半軸長為半徑的圓與直線相切,分別是橢圓的左右兩個頂點,為橢圓上的動點.
(1)求橢圓的標準方程;
(2)若均不重合,設直線的斜率分別為,求的值。
(1)(2)

試題分析:(1)由題意可得圓的方程為直線與圓相切,

所以橢圓方程為 
(2)設



的值為
點評:熟記橢圓中的關系式,并靈活應用。注意橢圓中的關系式與雙曲線中的關系式的不同。此題屬于基礎題型。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(12分)已知橢圓C:以雙曲線的焦點為頂點,其離心率與雙曲線的離心率互為倒數.
(1)求橢圓C的方程;
(2)若橢圓C的左、右頂點分別為點A,B,點M是橢圓C上異于A,B的任意一點.
①求證:直線MA,MB的斜率之積為定值;
②若直線MA,MB與直線x=4分別交于點P,Q,求線段PQ長度的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線=1的漸近線與圓(x-3)2+y2=r2(r>0)相切,則r=(   )
A.B.2C.3D.6

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經過點,又知直線與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若,求實數k值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

拋物線上一點P到軸的距離是4,則點P到該拋物線焦點的距離是(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若直線與曲線有兩個不同的交點,則實數的取值范圍是( )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)已知半徑為6的圓軸相切,圓心在直線上且在第二象限,直線過點
(Ⅰ)求圓的方程;
(Ⅱ)若直線與圓相交于兩點且,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

給出下列命題,其中正確命題的序號是          (填序號)。
(1)已知橢圓兩焦點為,則橢圓上存在六個不同點,使得為直角三角形;
(2)已知直線過拋物線的焦點,且與這條拋物線交于兩點,則的最小值為2;
(3)若過雙曲線的一個焦點作它的一條漸近線的垂線,垂足為,為坐標原點,則;
(4)已知⊙則這兩圓恰有2條公切線。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖所示,F1和F2分別是雙曲線的兩個焦點,A和B是以O為圓心,|OF1|為半徑的圓與該雙曲線左支的兩個交點,且△F2AB是等邊三角形,則離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案