【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建坐標系,已知曲線,已知過點的直線的參數方程為:(t為參數),直線與曲線C分別交于M,N.
(Ⅰ)寫出曲線C和直線的普通方程;
(Ⅱ)若成等比數列,求a的值.
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=x2+bx+c,若對任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤6,則b的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x﹣2)ex+a(x﹣1)2有兩個零點.
(1)求a的取值范圍;
(2)設x1 , x2是f(x)的兩個零點,證明:x1+x2<2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐中,底面ABCD為菱形,,Q是AD的中點.
(Ⅰ)若,求證:平面PQB平面PAD;
(Ⅱ)若平面APD平面ABCD,且,點M在線段PC上,試確定點M的位置,使二面角的大小為,并求出的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.
(1)求證:DC⊥平面PAC;
(2)求證:平面PAB⊥平面PAC;
(3)設點E為AB的中點,在棱PB上是否存在點F,使得PA∥平面CEF?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x3+ax2+bx+c.
(1)求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)設a=b=4,若函數f(x)有三個不同零點,求c的取值范圍;
(3)求證:a2﹣3b>0是f(x)有三個不同零點的必要而不充分條件.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據某氣象中心觀察和預測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數圖象如圖所示.過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側部分的面積即時間t(h)內沙塵暴所經過的路程s(km).
(1)當t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數學關系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com