【題目】某漁業(yè)公司今年初用98萬元購進一艘遠洋漁船,每年的捕撈可有50萬元的總收入,已知使用年()所需(包括維修費)的各種費用總計為萬元.
(1)該船撈捕第幾年開始贏利(總收入超過總支出,今年為第一年)?
(2)該船若干年后有兩種處理方案:
①當(dāng)贏利總額達到最大值時,以8萬元價格賣出;
②當(dāng)年平均贏利達到最大值時,以26萬元賣出,問哪一種方案較為合算?請說明理由.
【答案】(1)該船撈捕第3年開始贏利;(2)方案②合算.
【解析】
(1)根據(jù)題意,由該船撈捕第年開始贏利,可得,解得的取值范圍從而解決問題.
(2)①先求出平均盈利的函數(shù)表達式,再利用基本不等式求其最大值,從而得出盈利總額; ②先求出平均盈利的函數(shù)表達式,再利用二次函數(shù)的圖象與性質(zhì)求其最大值,從而得出盈利總額;最后比較兩種情況的盈利額的情況即可解決問題.
(1)因為每年的捕撈可有萬元的總收入,使用年所需(包括維修費)的各種費用總計為萬元,
所以由該船撈捕第年開始贏利,可得,即
又,
所以該船撈捕第年開始贏利;
(2)①令
所以當(dāng)時,贏利總額達到最大值萬元
所以年贏利總額為;
令,則由基本不等式可得(當(dāng)且僅當(dāng),即時取等號)
即當(dāng)時,年平均贏利達到最大值為萬元;
所以年贏利總額為萬元, 兩種情況的盈利額一樣,但方案②的時間短,故方案②合算.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知梯形如圖(1)所示,其中, ,四邊形是邊長為的正方形,現(xiàn)沿進行折疊,使得平面平面,得到如圖(2)所示的幾何體.
(Ⅰ)求證:平面平面;
(Ⅱ)已知點在線段上,且平面,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng),則稱點為平面上單調(diào)格點:設(shè)
求從區(qū)域中任取一點,而該點落在區(qū)域上的概率;
求從區(qū)域中的所有格點中任取一點,而該點是區(qū)域上的格點的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣ax2+bx+c(a,b,c∈R).
(1)若函數(shù)f(x)在x=﹣1和x=3處取得極值,試求a,b的值;
(2)在(1)的條件下,當(dāng)x∈[﹣2,6]時,f(x)<2|c|恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三角形ABC的邊長為2,D,E,F(xiàn)分別在三邊AB,BC和CA上,且D為AB的中點,,,.
(1)當(dāng)時,求的大;
(2)求的面積S的最小值及使得S取最小值時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某投資公司計劃在甲、乙兩個互聯(lián)網(wǎng)創(chuàng)新項目上共投資1200萬元,每個項目至少要投資300萬元.根據(jù)市場分析預(yù)測:甲項目的收益與投入滿足,乙項目的收益與投入滿足.設(shè)甲項目的投入為.
(1)求兩個項目的總收益關(guān)于的函數(shù).
(2)如何安排甲、乙兩個項目的投資,才能使總收益最大?最大總收益為多少?(注:收益與投入的單位都為“萬元”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)是偶函數(shù).求的值,并在坐標系中畫出的大致圖象;
(2)若當(dāng)時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù),2019年11月全國(居民消費價格指數(shù)),同比上漲,上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響上漲3.27個百分點.下圖是2019年11月一籃子商品權(quán)重,根據(jù)該圖,下列四個結(jié)論正確的有______.
①一籃子商品中權(quán)重最大的是居住
②一籃子商品中吃穿住所占權(quán)重超過
③豬肉在一籃子商品中權(quán)重為
④豬肉與其他禽肉在一籃子商品中權(quán)重約為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題表示雙曲線,命題表示橢圓.
(1)若命題p與命題q都為真命題,則p是q的什么條件?
(2)若為假命題,且為真命題,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com