【題目】已知梯形如圖(1)所示,其中, ,四邊形是邊長為的正方形,現(xiàn)沿進行折疊,使得平面平面,得到如圖(2)所示的幾何體.
(Ⅰ)求證:平面平面;
(Ⅱ)已知點在線段上,且平面,求與平面所成角的正弦值.
【答案】(1)見解析;(2)與平面所成角的正弦值為.
【解析】試題分析:(1)要證面面垂直,可先證線線垂直,先由線面關(guān)系得到,由為正方形得,進而得到平面,從而得到面面垂直;(2)建立空間坐標系,分別求得面的法向量和線的方向向量,由向量夾角公式求得線面角.
解析:
(Ⅰ)證明:由平面平面, ,
平面平面, 平面,
得平面,又平面,
∴,
由為正方形得,
又, , 平面,
∴平面,
又∵平面,
∴平面平面.
(Ⅱ)由平面得, ,
又故以為原點, , , 所在直線分別為軸, 軸, 軸建立圖示空間直角坐標系,則, , , ,
設(shè),則,
設(shè)平面的一個法向量為,
由, ,
得取得,
∵平面, ,
∴, ,
, ,
設(shè)與平面所成的角為,則
,
∴與平面所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】某市縣鄉(xiāng)教師流失現(xiàn)象非常嚴重,為了縣鄉(xiāng)孩子們能接受良好教育,某市今年要為兩所縣鄉(xiāng)中學招聘儲備未來三年的教師,現(xiàn)在每招聘一名教師需要1萬元,若三年后教師嚴重短缺時再招聘,由于各種因素,則每招聘一名教師需要3萬元,已知現(xiàn)在該市縣鄉(xiāng)中學無多余教師,為決策應招聘多少縣鄉(xiāng)教師搜集并整理了該市50所縣鄉(xiāng)中學在過去三年內(nèi)的教師流失數(shù),得到如表的頻率分布表:
流失教師數(shù) | 6 | 7 | 8 | 9 |
頻數(shù) | 10 | 15 | 15 | 10 |
以這50所縣鄉(xiāng)中學流失教師數(shù)的頻率代替一所縣鄉(xiāng)中學流失教師數(shù)發(fā)生的概率,記表示兩所縣鄉(xiāng)中學在過去三年共流失的教師數(shù), 表示今年為兩所縣鄉(xiāng)中學招聘的教師數(shù).為保障縣鄉(xiāng)孩子教育不受影響,若未來三年內(nèi)教師有短缺,則第四年馬上招聘.
(1)求的分布列;
(2)若要求,確定的最小值;
(3)以未來四年內(nèi)招聘教師所需費用的期望值為決策依據(jù),在與之中選其一,應選用哪個?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關(guān),為了確定下一個時段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度 (單位:),對某種雞的時段產(chǎn)蛋量(單位:) 和時段投入成本(單位:萬元)的影響,為此,該企業(yè)收集了7個雞舍的時段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中的統(tǒng)計量的值.
其中.
(1)根據(jù)散點圖判斷,與哪一個更適宜作為該種雞的時段產(chǎn)蛋量關(guān)于雞舍時段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)
(2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知時段投入成本與的關(guān)系為,當時段控制溫度為時,雞的時段產(chǎn)蛋量及時段投入成本的預報值分別是多少?
附:①對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是直角梯形, , ,
,點在線段上,且, , 平面.
(1)求證:平面平面;
(2)當四棱錐的體積最大時,求四棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知空間幾何體中, 與均為邊長為的等邊三角形, 為腰長為的等腰三角形,平面平面,平面平面.
(Ⅰ)試在平面內(nèi)作一條直線,使得直線上任意一點與的連線均與平面平行,并給出詳細證明;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018江蘇南京師大附中、天一、海門、淮陰四校高三聯(lián)考】如圖,一只螞蟻從單位正方體的頂點出發(fā),每一步(均為等可能性的)經(jīng)過一條邊到達另一頂點,設(shè)該螞蟻經(jīng)過步回到點的概率.
(I)分別寫出的值;
(II)設(shè)頂點出發(fā)經(jīng)過步到達點的概率為,求的值;
(III)求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年10月9日,教育部考試中心下發(fā)了《關(guān)于2017年普通高考考試大綱修訂內(nèi)容的通知》,在各科修訂內(nèi)容中明確提出,增加中華優(yōu)秀傳統(tǒng)文化的考核內(nèi)容,積極培育和踐行社會主義核心價值觀,充分發(fā)揮高考命題的育人功能和積極導向作用.宿州市教育部門積極回應,編輯傳統(tǒng)文化教材,在全市范圍內(nèi)開設(shè)書法課,經(jīng)典誦讀等課程.為了了解市民對開設(shè)傳統(tǒng)文化課的態(tài)度,教育機構(gòu)隨機抽取了200位市民進行了解,發(fā)現(xiàn)支持開展的占,在抽取的男性市民120人中持支持態(tài)度的為80人.
(Ⅰ)完成列聯(lián)表,并判斷是否有的把握認為性別與支持與否有關(guān)?
(Ⅱ)為了進一步征求對開展傳統(tǒng)文化的意見和建議,從抽取的200位市民中對不支持的按照分層抽樣的方法抽取5位市民,并從抽取的5人中再隨機選取2人進行座談,求選取的2人恰好為1男1女的概率.
附: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知分別是橢圓的左、右焦點, 是橢圓上一點,且.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點,且,試求點到直線的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com