【題目】已知中心在坐標(biāo)原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左、右焦點(diǎn)分別為F1F2 , 這兩條曲線在第一象限的交點(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,記橢圓與雙曲線的離心率分別為e1 , e2 , 則e1e2的取值范圍是(
A.( ,+∞)
B.( ,+∞)
C.( ,+∞)
D.(0,+∞)

【答案】A
【解析】解:設(shè)橢圓和雙曲線的半焦距為c,|PF1|=m,|PF2|=n,(m>n), 由于△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,
即有m=10,n=2c,
由橢圓的定義可得m+n=2a1 ,
由雙曲線的定義可得m﹣n=2a2
即有a1=5+c,a2=5﹣c,(c<5),
再由三角形的兩邊之和大于第三邊,可得2c+2c>10,
可得c> ,即有 <c<5.
由離心率公式可得e1e2= = = ,
由于1< <4,則有
則e1e2的取值范圍為( ,+∞).
故選:A.
設(shè)橢圓和雙曲線的半焦距為c,|PF1|=m,|PF2|=n,(m>n),由條件可得m=10,n=2c,再由橢圓和雙曲線的定義可得a1=5+c,a2=5﹣c,(c<5),運(yùn)用三角形的三邊關(guān)系求得c的范圍,再由離心率公式,計(jì)算即可得到所求范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,其中m為實(shí)數(shù).
(Ⅰ)若函數(shù)f(x)在(1,f(1))處的切線方程為3x+3y﹣4=0,求m的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠DAB= ,AC∩BD=O,且PO⊥平面ABCD,PO= ,點(diǎn)F,G分別是線段PB,PD上的中點(diǎn),E在PA上,且PA=3PE.
(Ⅰ)求證:BD∥平面EFG;
(Ⅱ)求直線AB與平面EFG的成角的正弦值;
(Ⅲ)請(qǐng)畫出平面EFG與四棱錐的表面的交線,并寫出作圖的步驟.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E的右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,點(diǎn)M 在橢圓E上.
(1)求橢圓E的方程;
(2)設(shè)P(﹣4,0),直線y=kx+1與橢圓E交于A,B兩點(diǎn),若直線PA,PB均與圓x2+y2=r2(r>0)相切,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓W: (b>0)的一個(gè)焦點(diǎn)坐標(biāo)為
(Ⅰ)求橢圓W的方程和離心率;
(Ⅱ)若橢圓W與y軸交于A,B兩點(diǎn)(A點(diǎn)在B點(diǎn)的上方),M是橢圓上異于A,B的任意一點(diǎn),過點(diǎn)M作MN⊥y軸于N,E為線段MN的中點(diǎn),直線AE與直線y=﹣1交于點(diǎn)C,G為線段BC的中點(diǎn),O為坐標(biāo)原點(diǎn).求∠OEG的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】醫(yī)生的專業(yè)能力參數(shù)K可有效衡量醫(yī)生的綜合能力,K越大,綜合能力越強(qiáng),并規(guī)定:能力參數(shù)K不少于30稱為合格,不少于50稱為優(yōu)秀.某市衛(wèi)生管理部門隨機(jī)抽取300名醫(yī)生進(jìn)行專業(yè)能力參數(shù)考核,得到如圖所示的能力K的頻率分布直方圖:
(1)求出這個(gè)樣本的合格率、優(yōu)秀率;
(2)現(xiàn)用分層抽樣的方法從中抽出一個(gè)樣本容量為20的樣本,再從這20名醫(yī)生中隨機(jī)選出2名. ①求這2名醫(yī)生的能力參數(shù)K為同一組的概率;
②設(shè)這2名醫(yī)生中能力參數(shù)K為優(yōu)秀的人數(shù)為X,求隨機(jī)變量X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其圖象與直線y=﹣1相鄰兩個(gè)交點(diǎn)的距離為π,若f(x)>1對(duì)x∈(﹣ , )恒成立,則φ的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線C1:ρ=2cosθ,曲線C2:ρ=(ρcosθ+4)cosθ.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系xOy,曲線C的參數(shù)方程為 (t為參數(shù)). (Ⅰ)求C1 , C2的直角坐標(biāo)方程;
(Ⅱ)C與C1 , C2交于不同四點(diǎn),這四點(diǎn)在C上的排列順次為H,I,J,K,求||HI|﹣|JK||的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線E: (a>0,b>0)的右頂點(diǎn)為A,拋物線C:y2=8ax的焦點(diǎn)為F,若在E的漸近線上存在點(diǎn)P使得PA⊥FP,則E的離心率的取值范圍是(
A.(1,2)
B.(1, ]
C.(2,+∞)
D.[ ,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案