【題目】給出下列四個結(jié)論:
①已知X服從正態(tài)分布N(0,σ2),且P(﹣2≤X≤2)=0.6,則P(X>2)=0.2;
②若命題 ,則¬p:x∈(﹣∞,1),x2﹣x﹣1≥0;
③已知直線l1:ax+3y﹣1=0,l2:x+by+1=0,則l1⊥l2的充要條件是
其中正確的結(jié)論的個數(shù)為( )
A.0
B.1
C.2
D.3

【答案】B
【解析】解:對于①,已知X服從正態(tài)分布N(0,σ2),可得正態(tài)曲線關(guān)于y軸對稱,當(dāng)P(﹣2≤X≤2)=0.6時,則P(X>2)=0.2,正確;
對于②,若命題 ,則¬p:x∈[1,+∞),x2﹣x﹣1≥0,故錯;
對于③,當(dāng)a=b=0時,l1⊥l2 , 故錯,
故選:B
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,且.

(1)證明:平面平面;

(2)若,,二面角的大小為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在區(qū)間上的函數(shù),

(1)判定函數(shù)的單調(diào)性,并用定義證明;

(2)設(shè)方程有四個不相等的實(shí)根

①證明:

②在是否存在實(shí)數(shù),使得函數(shù)在區(qū)間單調(diào),且的取值范圍為,若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)滿足,且.

(1)求的解析式;

(2)當(dāng)時,不等式有解,求實(shí)數(shù)的取值范圍;

(3)設(shè),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù))若以O(shè)點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為ρ=4cos θ.
(1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;
(2)將曲線C上各點(diǎn)的橫坐標(biāo)縮短為原來的 ,再將所得曲線向左平移1個單位,得到曲線C1 , 求曲線C1上的點(diǎn)到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動時間的樣本數(shù)據(jù)(單位:小時)

(1)應(yīng)收集多少位女生樣本數(shù)據(jù)?

(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計該校學(xué)生每周平均體育運(yùn)動時間超過4個小時的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動時間超過4個小時.請完成每周平均體育運(yùn)動時間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為該校學(xué)生的每周平均體育運(yùn)動時間與性別有關(guān).

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且2ccosB=2a+b,若△ABC的面積為S= c,則ab的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(a﹣bx3)ex ,且函數(shù)f(x)的圖象在點(diǎn)(1,e)處的切線與直線x﹣(2e+1)y﹣3=0垂直.
(Ⅰ)求a,b;
(Ⅱ)求證:當(dāng)x∈(0,1)時,f(x)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

(1) 若,求曲線處的切線方程;

(2)求函數(shù)單調(diào)區(qū)間

(3) 若有兩個零點(diǎn),求證: .

查看答案和解析>>

同步練習(xí)冊答案