(本小題滿分12分)
根據(jù)公安部最新修訂的《機(jī)動車駕駛證申領(lǐng)和使用規(guī)定》:每位駕駛證申領(lǐng)者必須通過《科目一》(理論科目)、《綜合科》(駕駛技能加科目一的部分理論)的考試.已知李先生已通過《科目一》的考試,且《科目一》的成績不受《綜合科》的影響,《綜合科》三年內(nèi)有5次預(yù)約考試的機(jī)會,一旦某次考試通過,便可領(lǐng)取駕駛證,不再參加以后的考試,否則就一直考到第5次為止.設(shè)李先生《綜合科》每次參加考試通過的概率依次為0.5,0.6,0.7,0.8,0.9.
(1)求在三年內(nèi)李先生參加駕駛證考試次數(shù)的分布列和數(shù)學(xué)期望;
(2)求李先生在三年內(nèi)領(lǐng)到駕駛證的概率.

(1)的分布列為:


 



5

0.5
0.3
0.14
0.048
0.012
(2)

解析試題分析:(1)由題意知的取值為1,2,3,4,5.                           ……1分
,

 ,,,                 ……6分
【或
的分布列為:


1



5

0.5
0.3
0.14
0.048
0.012
                                                                      ……8分
1.772             ……10分
(2)李先生在三年內(nèi)領(lǐng)到駕照的概率為:
.           ……12分
考點:本小題主要考查離散型隨機(jī)變量的分布列、期望和隨機(jī)變量的概率.
點評:寫離散型隨機(jī)變量的分布列時,要準(zhǔn)確寫出隨機(jī)變量取不同值時的概率,可以利用概率和為1檢驗是寫的分布列否正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

兩個人射擊,甲射擊一次中靶概率是,乙射擊一次中靶概率是
(Ⅰ)兩人各射擊1次,兩人總共中靶至少1次就算完成目標(biāo),則完成目標(biāo)概率是多少?
(Ⅱ)兩人各射擊2次,兩人總共中靶至少3次就算完成目標(biāo),則完成目標(biāo)的概率是多少?
(Ⅲ)兩人各射擊5次,兩人總共中靶至少1次的概率是否超過99%?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)甲盒中有紅,黑,白三種顏色的球各3個,乙盒子中有黃,黑,白三種顏色的球各2個,從兩個盒子中各取1個球,求取出的兩個球是不同顏色的概率。
(2)在單位圓的圓周上隨機(jī)取三點A、B、C,求是銳角三角形的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙等五名奧運志愿者被隨機(jī)地分到四個不同的崗位服務(wù),每個崗位至少有一名志愿者.(Ⅰ)求甲、乙兩人同時參加崗位服務(wù)的概率;(Ⅱ)求甲、乙兩人不在同一個崗位服務(wù)的概率;(Ⅲ)設(shè)隨機(jī)變量為這五名志愿者中參加崗位服務(wù)的人數(shù), 可取何值?請求出相應(yīng)的值的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
甲、乙兩運動員進(jìn)行射擊訓(xùn)練,已知他們擊中的環(huán)數(shù)都穩(wěn)定在8,9,10環(huán),且每次射擊擊中與否互不影響.甲、乙射擊命中環(huán)數(shù)的概率如表:

 
8環(huán)
9環(huán)
10環(huán)

0.2
0.45
0.35

0.25
0.4
0.35
(Ⅰ)若甲、乙兩運動員各射擊1次,求甲運動員擊中8環(huán)且乙運動員擊中9環(huán)的概率;
(Ⅱ)若甲、乙兩運動員各自射擊2次,求這4次射擊中恰有3次擊中9環(huán)以上(含9環(huán))的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
若盒中裝有同一型號的燈泡共10只,其中有8只合格品,2只次品。
(Ⅰ)某工人師傅有放回地連續(xù)從該盒中取燈泡3次,每次取一只燈泡,求2次取到次品的概率;
(Ⅱ)某工人師傅用該盒中的燈泡去更換會議室的一只已壞燈泡,每次從中取一燈泡,若是正品則用它更換已壞燈泡,若是次品則將其報廢(不再放回原盒中),求成功更換會議室的已壞燈泡所用燈泡只數(shù)的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分) 某工廠組織工人參加上崗測試,每位測試者最多有三次機(jī)會,一旦某次測試通過,便可上崗工作,不再參加以后的測試;否則就一直測試到第三次為止。設(shè)每位工人每次測試通過的概率依次為0.2,0.5,0.5,每次測試相互獨立。
(1)求工人甲在這次上崗測試中參加考試次數(shù)為2、3的概率分別是多少?
(2)若有4位工人參加這次測試,求至少有一人不能上崗的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)關(guān)于的一元二次方程.
(1)若,都是從集合中任取的數(shù)字,求方程有實根的概率;
(2)若是從區(qū)間[0,4]中任取的數(shù)字,是從區(qū)間[1,4]中任取的數(shù)字,求方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)將52名志愿者分成A,B兩組參加義務(wù)植樹活動,A組種植150捆白楊樹苗,B組種植200捆沙棘樹苗. 假定A,B兩組同時開始植樹.
(1)根據(jù)歷年統(tǒng)計,每名志愿者種植一捆白楊樹苗用時小時,種植一捆沙棘用時小時,應(yīng)如何分配A,B兩組的人數(shù),使植樹活動持續(xù)的時間最短?
(2)在按(1)分配的人數(shù)種植1小時后發(fā)現(xiàn),每名志愿者種植一捆白楊仍用時小時,而每名志愿者種植一捆沙棘實際用時小時,于是,從A組抽調(diào)6名志愿者加入B組繼續(xù)種植,求植樹活動持續(xù)的時間.

查看答案和解析>>

同步練習(xí)冊答案