18.設A={x|2x2+ax+2=0},2∈A,集合B={x|x2=1}.
(1)求a的值,并寫出集合A的所有子集;
(2)若集合C={x|bx=1},且C⊆B,求實數(shù)b的值.

分析 (1)A={x|2x2+ax+2=0},2∈A,即x=2滿足方程,可求a的值.即可求集合A的所有子集;
(2)根據(jù)C⊆B,建立條件關系即可求實數(shù)b的取值.

解答 解:(1)A={x|2x2+ax+2=0},2∈A,即x=2滿足方程,
得:8-2a+2=0,
解得:a=-5.
那么集合A═{x|2x2-5x+2=0}={$\frac{1}{2}$,2}
故得集合A的子集為:$ϕ,\{\frac{1}{2}\},\{2\},\{\frac{1}{2},2\}$.
(2)集合C={x|bx=1},集合B={x|x2=1}={-1,1}.
∵C⊆B.
當C=∅時,滿足題意,此時方程bx=1無解,b=0.
當C≠∅時,此時方程bx=1有解,x=$\frac{1}$,
要是C⊆B成立,
則$\frac{1}=-1$或$\frac{1}=1$,
解得:b=-1或b=1.
故得若集合C={x|bx=1},且C⊆B,實數(shù)b的值為0或-1或1.

點評 本題主要考查集合的基本運算,比較基礎

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓C的中心在原點,離心率為$\frac{1}{2}$,且與拋物線y2=4x有共同的焦點.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設直線l:y=kx+m與橢圓C相切于N點,且與直線x=4交于M點,試探究,在坐標平面內(nèi)是否存在點P,使得以MN為直徑的圓恒過點P?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列函數(shù)中,最小正周期為π且圖象關于原點對稱的函數(shù)是( 。
A.y=sin2x+cos2xB.y=sinx+cosxC.y=cos(2x+$\frac{π}{2}$)D.y=sin(2x+$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-2x-1,x∈(-1,2].
(Ⅰ)畫出函數(shù)f(x)的圖象;
(Ⅱ)討論當實數(shù)k為何實數(shù)值時,方程x2-2x-1-k=0在(-1,2]上的解集為空集、單元素集、兩元素集?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosB=(3c-b)cosA.
(1)若asinB=2$\sqrt{2}$,求b;
(2)若a=2$\sqrt{2}$,且△ABC的面積為$\sqrt{2}$,求b+c的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的兩條漸近線與拋物線y2=4x分別相交于異于原點O的兩點A,B,F(xiàn)為拋物線y2=4x的焦點,已知∠AFB=$\frac{2π}{3}$,則該雙曲線的離心率為$\sqrt{13}$或$\frac{\sqrt{21}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖1,已知四邊形ABFD為直角梯形,AB∥DF,∠ADF=$\frac{π}{2}$,BC⊥DF,△AED為等邊三角形,AD=$\frac{{10\sqrt{3}}}{3}$,DC=$\frac{{2\sqrt{7}}}{3}$,如圖2,將△AED,△BCF分別沿AD,BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,連接EF,DF,設G為AE上任意一點.

(1)證明:DG∥平面BCF;
(2)若GC=$\frac{16}{3}$,求$\frac{EG}{GA}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=x3-tx2+3x,若對于任意的a∈[2,4],b∈(4,6],函數(shù)f(x)在區(qū)間[a,b]上單調(diào)遞減,則實數(shù)t的取值范圍是( 。
A.(-∞,$\frac{37}{4}$]B.(-∞,5]C.[5,+∞)D.[$\frac{37}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓C的左、右焦點分別為(-$\sqrt{3},0$)、($\sqrt{3},0$),且經(jīng)過點($\sqrt{3},\frac{1}{2}$).
( I)求橢圓C的方程:
( II)直線y=kx(k∈R,k≠0)與橢圓C相交于A,B兩點,D點為橢圓C上的動點,且|AD|=|BD|,請問△ABD的面積是否存在最小值?若存在,求出此時直線AB的方程:若不存在,說明理由.

查看答案和解析>>

同步練習冊答案