已知函數(shù)的圖象在與軸交點(diǎn)處的切線方程是.
(I)求函數(shù)的解析式;
(II)設(shè)函數(shù),若的極值存在,求實(shí)數(shù)的取值范圍以及函數(shù)取得極值時對應(yīng)的自變量的值.

(I);(II)時,函數(shù)有極值;
當(dāng)時,有極大值;當(dāng)時,有極小值.

解析試題分析:(I)涉及切線,便要求出切點(diǎn).本題中切點(diǎn)如何求?函數(shù)的圖象在與軸交點(diǎn)處的切線方程是.說明切點(diǎn)就是直線軸交點(diǎn),所以令便得切點(diǎn)為(2,0).切點(diǎn)既在切線上又曲線,所以有, 即.
函數(shù)在切點(diǎn)處的導(dǎo)數(shù)就是切線的斜率,所以由已知有.這樣便得一個方程組,解這個方程組求出 便的解析式.
(II)將求導(dǎo)得,,
.這是一個二次方程,要使得函數(shù)有極值,則方程要有兩個不同的實(shí)數(shù)根,所以,由此可得的范圍.解方程有便得取得極值時的值.
試題解析:( I)由已知,切點(diǎn)為(2,0), 故有, 即
,由已知
聯(lián)立①②,解得.所以函數(shù)的解析式為  
(II)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9c/f/138k34.png" style="vertical-align:middle;" />

當(dāng)函數(shù)有極值時,則,方程有實(shí)數(shù)解,                                           由,得.
①當(dāng)時,有實(shí)數(shù),在左右兩側(cè)均有,故函數(shù)無極值
②當(dāng)m<1時,g'(x)=0有兩個實(shí)數(shù)根x1= (2-), x2= (2+), g(x),g'(x) 的情況如下表:








  • +
    0

    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知函數(shù).
    (1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
    (2)若時,函數(shù)在閉區(qū)間上的最大值為,求的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知函數(shù),,(其中),設(shè).
    (Ⅰ)當(dāng)時,試將表示成的函數(shù),并探究函數(shù)是否有極值;
    (Ⅱ)當(dāng)時,若存在,使成立,試求的范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知函數(shù),),
    (Ⅰ)證明:當(dāng)時,對于任意不相等的兩個正實(shí)數(shù),均有成立;
    (Ⅱ)記
    (ⅰ)若上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
    (ⅱ)證明:.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    設(shè)數(shù)列的前項(xiàng)和為,已知(n∈N*).
    (Ⅰ)求數(shù)列的通項(xiàng)公式;
    (Ⅱ)求證:當(dāng)x>0時,
    (Ⅲ)令,數(shù)列的前項(xiàng)和為.利用(2)的結(jié)論證明:當(dāng)n∈N*且n≥2時,.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知函數(shù)
    (1)當(dāng)時,求的單調(diào)區(qū)間;
    (2)若,設(shè)是函數(shù)的兩個極值點(diǎn),且,記分別為的極大值和極小值,令,求實(shí)數(shù)的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    已知兩點(diǎn)、,點(diǎn)為坐標(biāo)平面內(nèi)的動點(diǎn),滿足.
    (1)求動點(diǎn)的軌跡方程;
    (2)若點(diǎn)是動點(diǎn)的軌跡上的一點(diǎn),軸上的一動點(diǎn),試討論直線與圓的位置關(guān)系.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    設(shè)函數(shù),
    (1)當(dāng)時,函數(shù)取得極值,求的值;
    (2)當(dāng)時,求函數(shù)在區(qū)間[1,2]上的最大值;
    (3)當(dāng)時,關(guān)于的方程有唯一實(shí)數(shù)解,求實(shí)數(shù)的值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:解答題

    設(shè)函數(shù)時取得極值.
    (1)求a、b的值;
    (2)若對于任意的,都有成立,求c的取值范圍.

    查看答案和解析>>

    同步練習(xí)冊答案