已知中心在原點,焦點在軸上的橢圓的離心率為,橢圓上異于長軸頂點的任意點與左右兩焦點、構成的三角形中面積的最大值為.
(1)求橢圓的標準方程;
(2)已知點,連接與橢圓的另一交點記為,若與橢圓相切時、不重合,連接與橢圓的另一交點記為,求的取值范圍.
(1);(2).
解析試題分析:(1)先利用已知條件列舉出有關、、的方程組,結合三者之間滿足的勾股關系求出、、的值,從而確定橢圓的方程;(2)設直線與的方程分別為以及,將兩條直線方程與橢圓方程聯(lián)立,結合韋達定理得到點與點之間的關系(關于軸對稱),從而得到兩點坐標之間的關系,最后將利用點的坐標進行表示,注意到坐標的取值范圍,然后利用二次函數(shù)求出的取值范圍.
(1)由題可知:,,
解得:,,,
故橢圓的方程為:;
(2)不妨設、、,
由題意可知直線的斜率是存在的,故設直線的斜率為,直線的斜率為
的方程為: 代入橢圓方程,得
,,
將,代入解得:,
的方程為:代入橢圓方程,得
,,
將,,代入解得:,
,又、不重合,,
,
.
考點:1.橢圓的方程;2.直線與橢圓的位置關系;3.二次函數(shù);4.向量的數(shù)量積
科目:高中數(shù)學 來源: 題型:解答題
銷售甲、乙兩種商品所得利潤分別為P(單位:萬元)和Q(單位:萬元),它們與投入資金(單位:萬元)的關系有經驗公式, . 今將3萬元資金投入經營甲、乙兩種商品,其中對甲種商品投資(單位:萬元)
(1)試建立總利潤(單位:萬元)關于的函數(shù)關系式,并指明函數(shù)定義域;
(2)如何投資經營甲、乙兩種商品,才能使得總利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是定義在上的奇函數(shù),且,若,有恒成立.
(1)判斷在上是增函數(shù)還是減函數(shù),并證明你的結論;
(2)若對所有恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=3x-.
(1)若f(x)=2,求x的值;
(2)判斷x>0時,f(x)的單調性;
(3)若3tf(2t)+mf(t)≥0對于t∈恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2個小題滿分8分。
已知.
(1)當,時,若不等式恒成立,求的范圍;
(2)試證函數(shù)在內存在零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為了降低能源損耗,某體育館的外墻需要建造隔熱層.體育館要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度(單位:cm)滿足關系:(,為常數(shù)),若不建隔熱層,每年能源消耗費用為8萬元.設為隔熱層建造費用與20年的能源消耗費用之和.
(1)求的值及的表達式;
(2)隔熱層修建多厚時,總費用達到最小?并求出最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為了尋找馬航殘骸,我國“雪龍?zhí)枴笨瓶即?014年3月26日從港口出發(fā),沿北偏東角的射線方向航行,而在港口北偏東角的方向上有一個給科考船補給物資的小島,海里,且.現(xiàn)指揮部需要緊急征調位于港口正東海里的處的補給船,速往小島裝上補給物資供給科考船.該船沿方向全速追趕科考船,并在處相遇.經測算當兩船運行的航線與海岸線圍成的三角形的面積最小時,這種補給方案最優(yōu).
(1)求關于的函數(shù)關系式;
(2)應征調位于港口正東多少海里處的補給船只,補給方案最優(yōu)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知的圖象關于坐標原點對稱。
(1)求的值,并求出函數(shù)的零點;
(2)若函數(shù)在[0,1]內存在零點,求實數(shù)b的取值范圍;
(3)設,已知的反函數(shù)=,若不等式在上恒成立,求滿足條件的最小整數(shù)k的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
定義在[-1,1]上的奇函數(shù)f(x),已知當x∈[-1,0]時,
f(x)=- (a∈R).
(1)求f(x)在[0,1]上的最大值;
(2)若f(x)是[0,1]上的增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com