已知函數f(x)=3x-.
(1)若f(x)=2,求x的值;
(2)判斷x>0時,f(x)的單調性;
(3)若3tf(2t)+mf(t)≥0對于t∈恒成立,求m的取值范圍.
科目:高中數學 來源: 題型:解答題
某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元。為了增加企業(yè)競爭力,決定優(yōu)化產業(yè)結構,調整出名員工從事第三產業(yè),調整后他們平均每人每年創(chuàng)造利為萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調整出多少名員工從事第三產業(yè)?
(2)在(1)的條件下,若調整出的員工創(chuàng)造的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則的取值范圍是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數(a≠0)滿足,為偶函數,且x=-2是函數的一個零點.又(>0).
(1)求函數的解析式;
(2)若關于x 的方程在上有解,求實數的取值范圍;
(3)令,求的單調區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)(2011•湖北)提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(Ⅰ)當0≤x≤200時,求函數v(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=x•v(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知中心在原點,焦點在軸上的橢圓的離心率為,橢圓上異于長軸頂點的任意點與左右兩焦點、構成的三角形中面積的最大值為.
(1)求橢圓的標準方程;
(2)已知點,連接與橢圓的另一交點記為,若與橢圓相切時、不重合,連接與橢圓的另一交點記為,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知二次函數f(x)=ax2+bx+c (a≠0)且滿足f(-1)=0,對任意實數x,恒有f(x)-x≥0,并且當x∈(0,2)時,f(x)≤.
(1)求f(1)的值;
(2)證明:a>0,c>0;
(3)當x∈[-1,1]時,函數g(x)=f(x)-mx (x∈R)是單調函數,求證:m≤0或m≥1.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某校要建一個面積為450平方米的矩形球場,要求球場的一面利用舊墻,其他各面用鋼筋網圍成,且在矩形一邊的鋼筋網的正中間要留一個3米的進出口(如圖).設矩形的長為米,鋼筋網的總長度為米.
(1)列出與的函數關系式,并寫出其定義域;
(2)問矩形的長與寬各為多少米時,所用的鋼筋網的總長度最?
(3)若由于地形限制,該球場的長和寬都不能超過25米,問矩形的長與寬各為多少米時,所用的鋼筋網的總長度最?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com