【題目】已知函數(shù)(其中e是自然對(duì)數(shù)的底數(shù),a,)在點(diǎn)處的切線方程是.
(1)求函數(shù)的單調(diào)區(qū)間.
(2)設(shè)函數(shù),若在上恒成立,求實(shí)數(shù)m的取值范圍.
【答案】(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2).
【解析】
(1)求出.由題意求出,,即可求出,,代入,即可求出的單調(diào)區(qū)間;
(2)由(1)知.解法1:要使在上恒成立,只需即可,利用導(dǎo)數(shù)求;解法2:要使在上恒成立,等價(jià)于在上恒成立.令,則只需即可,利用導(dǎo)數(shù)求;解法3:要使在上恒成立,等價(jià)于在上恒成立. 先證明,可得當(dāng)時(shí),有,可得,即求實(shí)數(shù)m的取值范圍.
(1)對(duì)函數(shù)求導(dǎo)得,
由條件可知,,解得,,
所以.
.令得,
于是,當(dāng)時(shí),,函數(shù)單調(diào)遞減;
當(dāng)時(shí),,函數(shù)單調(diào)遞增.
故函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(2)由(1)知.
解法1:要使在上恒成立,只需即可.
因?yàn)?/span>,,
所以在上單調(diào)遞增.
因?yàn)楫?dāng)時(shí),,當(dāng)時(shí),,
所以,在上存在唯一的零點(diǎn),滿足,
所以,
且在上單調(diào)遞減,在上單調(diào)遞增,
于是
由得,此時(shí)必有,,
兩邊同時(shí)取自然對(duì)數(shù),則有,即.
構(gòu)造函數(shù)(),則,
所以函數(shù)在上單調(diào)遞增,又,所以,即.
故,于是實(shí)數(shù)m的取值范圍是.
解法2:要使在上恒成立,等價(jià)于在上恒成立.
令(),則只需即可.
,令(),則,
所以在上單調(diào)遞增,又,,
所以有唯一的零點(diǎn),且,在上單調(diào)遞減,在上單調(diào)遞增.
因?yàn)?/span>,兩邊同時(shí)取自然對(duì)數(shù),則有,
即.
構(gòu)造函數(shù)(),則,
所以函數(shù)在上單調(diào)遞增,又,
所以,即.
所以.
于是實(shí)數(shù)m的取值范圍是
解法3:要使在上恒成立,
等價(jià)于在上恒成立.
先證明,令(),則,于是,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增,所以,故(當(dāng)且僅當(dāng)時(shí)取等號(hào))
所以,當(dāng)時(shí),有,所以,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),于是實(shí)數(shù)m的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)的定義域是,對(duì)任意的,有.當(dāng)時(shí),.給出下列四個(gè)關(guān)于函數(shù)的命題:
①函數(shù)是奇函數(shù);
②函數(shù)是周期函數(shù);
③函數(shù)的全部零點(diǎn)為,;
④當(dāng)算時(shí),函數(shù)的圖象與函數(shù)的圖象有且只有4個(gè)公共點(diǎn).
其中,真命題的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角三角形中,角,,的對(duì)邊分別為,,;.
(1)求角的大;
(2)在銳角三角形中,角,,的對(duì)邊分別為,,,若,,,求三角形的內(nèi)角平分線的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校對(duì)全體大一新生開展了一次有關(guān)“人工智能引領(lǐng)科技新發(fā)展”的學(xué)術(shù)講座,隨后對(duì)人工智能相關(guān)知識(shí)進(jìn)行了一次測試(滿分100分),如圖所示是在甲、乙兩個(gè)學(xué)院中各抽取的5名學(xué)生的成績的莖葉圖,由莖葉圖可知,下列說法正確的是( )
①甲、乙的中位數(shù)之和為159;
②甲的平均成績較低,方差較小;
③甲的平均成績較低,方差較大;
④乙的平均成績較高,方差較;
⑤乙的平均成績較高,方差較大.
A.①②④B.①③④C.①③⑤D.②⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】千百年來,我國勞動(dòng)人民在生產(chǎn)實(shí)踐中根據(jù)云的形狀、走向、速度、厚度、顏色等的變化,總結(jié)了豐富的“看云識(shí)天氣”的經(jīng)驗(yàn),并將這些經(jīng)驗(yàn)編成諺語,如“天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學(xué)為了驗(yàn)證“日落云里走,雨在半夜后”,觀察了所在地區(qū)A的100天日落和夜晚天氣,得到如下列聯(lián)表:
夜晚天氣 日落云里走 | 下雨 | 未下雨 |
出現(xiàn) | 25 | 5 |
未出現(xiàn) | 25 | 45 |
臨界值表 | ||||
P() | 0.10 | 0.05 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
并計(jì)算得到,下列小波對(duì)地區(qū)A天氣判斷不正確的是( )
A.夜晚下雨的概率約為
B.未出現(xiàn)“日落云里走”夜晚下雨的概率約為
C.有的把握認(rèn)為“‘日落云里走’是否出現(xiàn)”與“當(dāng)晚是否下雨”有關(guān)
D.出現(xiàn)“日落云里走”,有的把握認(rèn)為夜晚會(huì)下雨
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極值A,函數(shù),其中…是自然對(duì)數(shù)的底數(shù).
(1)求m的值,并判斷A是的最大值還是最小值;
(2)求的單調(diào)區(qū)間;
(3)證明:對(duì)于任意正整數(shù)n,不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年以來精準(zhǔn)扶貧政策的落實(shí),使我國扶貧工作有了新進(jìn)展,貧困發(fā)生率由年底的下降到年底的,創(chuàng)造了人類減貧史上的的中國奇跡.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例,年至年我國貧困發(fā)生率的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
貧困發(fā)生率 | 10.2 | 8.5 | 7.2 | 5.7 | 4.5 | 3.1 | 1.4 |
(1)從表中所給的個(gè)貧困發(fā)生率數(shù)據(jù)中任選兩個(gè),求兩個(gè)都低于的概率;
(2)設(shè)年份代碼,利用線性回歸方程,分析年至年貧困發(fā)生率與年份代碼的相關(guān)情況,并預(yù)測年貧困發(fā)生率.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
(的值保留到小數(shù)點(diǎn)后三位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】疫情期間,一同學(xué)通過網(wǎng)絡(luò)平臺(tái)聽網(wǎng)課,在家堅(jiān)持學(xué)習(xí).某天上午安排了四節(jié)網(wǎng)課,分別是數(shù)學(xué),語文,政治,地理,下午安排了三節(jié),分別是英語,歷史,體育.現(xiàn)在,他準(zhǔn)備在上午下午的課程中各任選一節(jié)進(jìn)行打卡,則選中的兩節(jié)課中至少有一節(jié)文綜學(xué)科(政治、歷史、地理)課程的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的極坐標(biāo)方程和曲線的參數(shù)方程;
(2)若,直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com