【題目】已知函數(shù)在處取得極值A,函數(shù),其中…是自然對(duì)數(shù)的底數(shù).
(1)求m的值,并判斷A是的最大值還是最小值;
(2)求的單調(diào)區(qū)間;
(3)證明:對(duì)于任意正整數(shù)n,不等式成立.
【答案】(1);是最小值;(2)單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;(3)證明過(guò)程見(jiàn)詳解.
【解析】
(1)先對(duì)函數(shù)求導(dǎo),根據(jù)題意,得到,求出,研究函數(shù)單調(diào)性,即可判斷出結(jié)果;
(2)對(duì)函數(shù)求導(dǎo),得到,令,對(duì)其求導(dǎo),研究其單調(diào)性,即可判斷函數(shù)的單調(diào)性;
(3)先由(1)得時(shí),恒成立,令,則,進(jìn)而求和,即可得出結(jié)果.
(1)因?yàn)?/span>,,所以,
又在處取得極值,
則,即;所以,
由得;由得,
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
因此在處取得最小值,即是最小值;
(2)由(1)得,
所以,
令,則,
因?yàn)?/span>,所以恒成立,
因此在上單調(diào)遞增;又,
所以,當(dāng)時(shí),,即;
當(dāng)時(shí),,即;
所以函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;
(3)由(1)知,,
所以,當(dāng)時(shí),恒成立;
令,則,
因此
,
即,
因此.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.
(1)求經(jīng)過(guò)橢圓右焦點(diǎn)且與直線(xiàn)垂直的直線(xiàn)的極坐標(biāo)方程;
(2)若為橢圓上任意-點(diǎn),當(dāng)點(diǎn)到直線(xiàn)距離最小時(shí),求點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)、、是三條不同的直線(xiàn),、、是三個(gè)不同的平面,給出下列四個(gè)命題:
①若,,,,,則;
②若,,則;
③若,是兩條異面直線(xiàn),,,,且,則;
④若,,,,,則.
其中正確命題的序號(hào)是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.若函數(shù)的圖象在點(diǎn)處的切線(xiàn)與的圖象也相切.
(1)求的方程和的值;
(2)設(shè)不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中e是自然對(duì)數(shù)的底數(shù),a,)在點(diǎn)處的切線(xiàn)方程是.
(1)求函數(shù)的單調(diào)區(qū)間.
(2)設(shè)函數(shù),若在上恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在兩個(gè)極值點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知橢圓的離心率為,分別是橢圈的左、右焦點(diǎn),橢圓的焦點(diǎn)到雙曲線(xiàn)漸近線(xiàn)的距離為.
(1)求橢圓的方程;
(2)直線(xiàn)與橢圓交于兩點(diǎn),以線(xiàn)段為直徑的圓經(jīng)過(guò)點(diǎn),且原點(diǎn)到直線(xiàn)的距離為,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知是曲線(xiàn):上的動(dòng)點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,設(shè)點(diǎn)的軌跡為曲線(xiàn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn),的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,點(diǎn),射線(xiàn)與曲線(xiàn),分別相交于異于極點(diǎn)的兩點(diǎn),求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com