在數(shù)列中,,,對任意成立,令,且是等比數(shù)列.
(1)求實(shí)數(shù)的值;
(2)求數(shù)列的通項(xiàng)公式;
(3)求和:.

(1);(2);(3).

解析試題分析:(1)先利用題中的定義,利用數(shù)列的前三項(xiàng)成等比數(shù)列求出的值,然后就的值進(jìn)行檢驗(yàn),即對數(shù)列是否為等比數(shù)列進(jìn)行檢驗(yàn);(2)根據(jù)等比數(shù)列的通項(xiàng)選擇累加法求數(shù)列的通項(xiàng)公式;(3)根據(jù)數(shù)列的通項(xiàng)公式,選擇錯(cuò)位相減法求數(shù)列的前項(xiàng)和.
試題解析:(1),,
,,,
數(shù)列為等比數(shù)列,,即,解得(舍),
當(dāng)時(shí),,即
,所以滿足條件;
(2),數(shù)列為等比數(shù)列,,
,,,
,
(3),
,
上式減下式得,
.
考點(diǎn):1.等比數(shù)列的定義;2.累加法求數(shù)列的通項(xiàng)公式;3.錯(cuò)位相減法

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}和{bn}滿足:a1λ,an+1ann-4,bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).
(1)對任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),設(shè)曲線在點(diǎn)處的切線與軸的交點(diǎn)為,其中為正實(shí)數(shù).
(1)用表示;
(2),若,試證明數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(3)若數(shù)列的前項(xiàng)和,記數(shù)列的前項(xiàng)和,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列中,的等比中項(xiàng).
(I)求數(shù)列的通項(xiàng)公式:
(II)若.求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)在之間插入個(gè)數(shù)連同按原順序組成一個(gè)公差為)的等差數(shù)列.
①設(shè),求數(shù)列的前;
②在數(shù)列中是否存在三項(xiàng)(其中成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項(xiàng);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和滿足:為常數(shù),且). 
(1)求的通項(xiàng)公式;
(2)設(shè),若數(shù)列為等比數(shù)列,求的值;
(3)在滿足條件(2)的情形下,設(shè),數(shù)列的前項(xiàng)和為 ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列中,,,等差數(shù)列中,,且
⑴求數(shù)列的通項(xiàng)公式;
⑵求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是各項(xiàng)都為正數(shù)的等比數(shù)列, 是等差數(shù)列,且,,
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對于任意的,滿足關(guān)系式
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng)公式是,前項(xiàng)和為,求證:對于任意的正整數(shù)n,總有

查看答案和解析>>

同步練習(xí)冊答案