【題目】如圖,在四邊形ABCD中, R), , ,且△BCD是以BC為斜邊的直角三角形.求:
(1)λ的值;
(2) 的值.

【答案】
(1)解:因?yàn)? ,所以BC∥AD,且

因?yàn)? ,所以

,所以

作AH⊥BD于H,則H為BD的中點(diǎn).

在Rt△AHB中,得 ,于是∠ABH=30°.

所以∠ADB=∠DBC=30°.

而∠BDC=90°,所以BD=BCcos30°,即 ,解得λ=2.

當(dāng)∠BCD=900時,解得λ=1.5故λ=2或1.5


(2)解:由(1)知,∠ABC=60°,|

所以 的夾角為120°.


【解析】(1)由題意可知 且△ABD是三邊分別為2,2, 的等腰三角形,利用已知條件可得∠ABD=30°,從而可得∠ABD=∠ADB=∠DBC=30°,解直角三角形可得λ(2)由(1)知,∠ABC=60°,| |=4,從而可得 的夾角1200 , 代入向量的數(shù)量積公式,即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題的說法錯誤的是(
A.命題“若x2﹣3x+2=0,則 x=1”的逆否命題為:“若x≠1,則x2﹣3x+2≠0”.
B.“x=1”是“x2﹣3x+2=0”的充分必要條件.
C.命題p:“?x∈R,sinx+cosx≤ ”是真命題
D.若¬(p∧q)為真命題,則p、q至少有一個為假命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面為菱形且, , 分別為的中點(diǎn), , ,

(Ⅰ)證明:直線∥平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l的方程為(a+1)x+y+2﹣a=0(a∈R)
(1)若直線l在兩坐標(biāo)軸上的截距相等,則直線l的方程是;
(2)若直線l不經(jīng)過第二象限,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信運(yùn)動”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?

附: ,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且點(diǎn)O為AC中點(diǎn).

(Ⅰ)證明:A1O⊥平面ABC;

(Ⅱ)求三棱錐C1﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,為側(cè)棱上的點(diǎn).

1)求證:

2)若平面,求二面角的大。

3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域?yàn)镈,若函數(shù)f(x)滿足條件:存在[a,b]D,使f(x)在[a,b]上的值域是[2a,2b],則稱f(x)為“倍擴(kuò)函數(shù)”,若函數(shù)f(x)=log2(2x+t)為“倍擴(kuò)函數(shù)”,則實(shí)數(shù)t的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱柱ABC﹣A1B1C1中,AA1⊥底面A1B1C1 , 底面為直角三角形,∠ACB=90°,AC=2,BC=1,CC1= ,P是BC1上一動點(diǎn),則A1P+PC的最小值是

查看答案和解析>>

同步練習(xí)冊答案