【題目】設(shè)直線l的方程為(a+1)x+y+2﹣a=0(a∈R)
(1)若直線l在兩坐標軸上的截距相等,則直線l的方程是;
(2)若直線l不經(jīng)過第二象限,則實數(shù)a的取值范圍是 .
【答案】
(1)3x+y=0或x+y+2=0
(2)(﹣∞,﹣1]
【解析】解:(1.)令x=0,得y=a﹣2. 令y=0,得x= (a≠﹣1) ∵l在兩坐標軸上的截距相等,∴a﹣2= ,解得a=2或a=0.
∴所求的直線l方程為3x+y=0或x+y+2=0.
(2.)直線l的方程可化為 y=﹣(a+1)x+a﹣2.
∵l不過第二象限,∴ ,解得a≤﹣1.
∴a的取值范圍為(﹣∞,﹣1].
所以答案是:3x+y=0或x+y+2=0,(﹣∞,﹣1]
【考點精析】解答此題的關(guān)鍵在于理解截距式方程的相關(guān)知識,掌握直線的截距式方程:已知直線與軸的交點為A,與軸的交點為B,其中,以及對一般式方程的理解,了解直線的一般式方程:關(guān)于的二元一次方程(A,B不同時為0).
科目:高中數(shù)學 來源: 題型:
【題目】已知 , 的夾角為120°,| |=2,| |=3,記| =3 ﹣2 , =2 +k .
(1)若 ⊥ ,求實數(shù)k的值.
(2)是否存在實數(shù)k,使得 ∥ ?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的公差為d,前n項和為Sn , 等比數(shù)列{bn}的公比為q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求數(shù)列{an},{bn}的通項公式
(2)當d>1時,記cn= ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,并依據(jù)質(zhì)量指標值劃分等極如下表:
質(zhì)量指標值 | |||
等級 | 三等品 | 二等品 | 一等品 |
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù) ,能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?
(2)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標值的均值比活動前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知⊙O:x2+y2=1和點M(4,2).
(Ⅰ)過點M向⊙O引切線l,求直線l的方程;
(Ⅱ)求以點M為圓心,且被直線y=2x﹣1截得的弦長為4的⊙M的方程;
(Ⅲ)設(shè)P為(Ⅱ)中⊙M上任一點,過點P向⊙O引切線,切點為Q.試探究:平面內(nèi)是否存在一定點R,使得 為定值?若存在,請舉出一例,并指出相應(yīng)的定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C的圓心在坐標原點,且與直線l1:x﹣y﹣2 =0相切 (Ⅰ)求直線l2:4x﹣3y+5=0被圓C所截得的弦AB的長.
(Ⅱ)過點G(1,3)作兩條與圓C相切的直線,切點分別為M,N,求直線MN的方程
(Ⅲ) 若與直線l1垂直的直線l與圓C交于不同的兩點P,Q,若∠POQ為鈍角,求直線l縱截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ),| ﹣ |= .
(1)求cos(α﹣β)的值;
(2)若0<α< ,﹣ <β<0,且sinβ=﹣ ,求sinα的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點
(1)求E的方程;
(2)若直線與E相交于兩點,且與(為坐標原點)的斜率之和為2,求點到直線的距離的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com