【題目】對某居民最近連續(xù)幾年的月用水量進行統(tǒng)計,得到該居民月用水量單位:噸的頻率分布直方圖,如圖一.

根據(jù)頻率分布直方圖估計該居民月平均用水量;

已知該居民月用水量T與月平均氣溫單位:的關(guān)系可用回歸直線模擬年當?shù)卦缕骄鶜鉁?/span>t統(tǒng)計圖如圖二,把2017年該居民月用水量高于和低于的月份分為兩層,用分層抽樣的方法選取5個月,再從這5個月中隨機抽取2個月,這2個月中該居民有個月每月用水量超過,視頻率為概率,求出

【答案】(1)10噸;(2)見解析

【解析】

由圖一計算該居民月平均用水量即可;

由回歸直線方程和圖二,利用分層抽樣法得出隨機變量的可能取值,計算對應(yīng)的概率值,寫出分布列,求出數(shù)學(xué)期望值.

解:由圖一可知,該居民月平均用水量約為

;

由回歸直線方程知,對應(yīng)的月平均氣溫約為

再根據(jù)圖二可得,該居民20175月和10月的用水量剛好為,

且該居民2017個月用水量高于,有6個月低于,

因此用分層抽樣的方法選取5個月,有2個月高于,有3個月低于,

則隨機變量的可能取值為0,1,2;

計算,,

的分布列如下表:

0

1

2

P

數(shù)學(xué)期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為“中學(xué)數(shù)學(xué)聯(lián)賽”選拔人才,分初賽和復(fù)賽兩個階段進行,規(guī)定:分數(shù)不小于本次考試成績中位數(shù)的具有復(fù)賽資格,某校有900名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.

(1)求獲得復(fù)賽資格應(yīng)劃定的最低分數(shù)線;

(2)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間各抽取多少人?

(3)從(2)抽取的7人中,選出4人參加全市座談交流,設(shè)表示得分在中參加全市座談交流的人數(shù),學(xué)校打算給這4人一定的物質(zhì)獎勵,若該生分數(shù)在給予500元獎勵,若該生分數(shù)在給予800元獎勵,用Y表示學(xué)校發(fā)的獎金數(shù)額,求Y的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于隨機變量及分布的說法正確的是(

A.拋擲均勻硬幣一次,出現(xiàn)正面的次數(shù)是隨機變量

B.某人射擊時命中的概率為0.5,此人射擊三次命中的次數(shù)服從兩點分布

C.離散型隨機變量的分布列中,隨機變量取各個值的概率之和可以小于1

D.離散型隨機變量的各個可能值表示的事件是彼此互斥的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行的“三色球”購物摸獎活動規(guī)定:在一次摸獎中,摸獎?wù)呦葟难b有3個紅球與4個白球的袋中任意摸出3個球,再從裝有1個藍球與2個白球的袋中任意摸出1個球,根據(jù)摸出4個球中紅球與藍球的個數(shù),設(shè)一、二、三等獎如下:

獎級

摸出紅、藍球個數(shù)

獲獎金額

一等獎

31

200

二等獎

30

50

三等獎

21

10

其余情況無獎且每次摸獎最多只能獲得一個獎級.

1)求摸獎?wù)叩谝淮蚊驎r恰好摸到1個紅球的概率;

2)求摸獎?wù)咴谝淮蚊勚蝎@獎金額的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為F,離心率為,直線l:與橢圓E相交于A,B兩點,

1求橢圓E的標準方程;

2延長AF交橢圓E于點M,延長BF交橢圓E于點N,若直線MN的斜率為1,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國有個名句“運籌帷幄之中,決勝千里之外”,其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌.古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,(如圖所示),表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位、百位、萬位數(shù)用縱式表示,十位、千位、十萬位用橫式表示,以此類推.例如8455用算籌表示就是,則以下用算籌表示的四位數(shù)正確的為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線 與拋物線 異于原點的交點為,且拋物線在點處的切線與軸交于點,拋物線在點處的切線與軸交于點,與軸交于點.

(1)若直線與拋物線交于點 ,且,求

(2)證明: 的面積與四邊形的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上是增函數(shù).

求實數(shù)的值;

若函數(shù)有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】柴靜《穹頂之下》的播出,讓大家對霧霾天氣的危害有了更進一步的認識,對于霧霾天氣的研究也漸漸活躍起來,某研究機構(gòu)對春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進行統(tǒng)計分析,得出下表數(shù)據(jù):

x

4

5

7

8

y

2

3

5

6

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測燃放煙花爆竹的天數(shù)為的霧霾天數(shù).

查看答案和解析>>

同步練習(xí)冊答案