【題目】已知三棱錐的棱長(zhǎng)均為6,其內(nèi)有個(gè)小球,球與三棱錐的四個(gè)面都相切,球與三棱錐的三個(gè)面和球都相切,如此類(lèi)推,…,球與三棱錐的三個(gè)面和球都相切(,且),則球的體積等于__________,球的表面積等于__________.
【答案】
【解析】
由正四面體的內(nèi)切球的半徑是高的可求得的半徑,得其體積,把底面向上平移,平移到與內(nèi)切球相切,這個(gè)平面以上的部分仍然是正四面體,而第二個(gè)球就是這個(gè)正四面體的內(nèi)切球,此球半徑是第一個(gè)球半徑的一半,依次類(lèi)推可得第個(gè)球.
如圖,是三棱錐的高,是的外心,設(shè),則,,
是三棱錐的外接球和內(nèi)切球的球心,在上,
設(shè)外接球半徑為,內(nèi)切球半徑為,則由得,,所以,
,
,
過(guò)中點(diǎn)作與底面平行的平面與三條棱交于點(diǎn),則平面與球相切,由題意球是三棱錐的內(nèi)切球,注意到三棱錐的棱長(zhǎng)是三棱錐棱長(zhǎng)的,所以有其內(nèi)切球半徑,同理球的半徑為,則是僅比為的等比數(shù)列,所以,即,
.
故答案為:;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1是菱形,且CA=CB1.
(1)證明:面CBA1⊥面CB1A;
(2)若∠BAA1=60°,A1C=BC=BA1,求二面角C﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問(wèn)卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:
分?jǐn)?shù)不少于120分 | 分?jǐn)?shù)不足120分 | 合計(jì) | |
線上學(xué)習(xí)時(shí)間不少于5小時(shí) | 4 | 19 | |
線上學(xué)習(xí)時(shí)間不足5小時(shí) | |||
合計(jì) | 45 |
(1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;
(2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);
②若將頻率視為概率,從全校高三該次檢測(cè)數(shù)學(xué)成績(jī)不少于120分的學(xué)生中隨機(jī)抽取20人,求這些人中每周線上學(xué)習(xí)時(shí)間不少于5小時(shí)的人數(shù)的期望和方差.
(下面的臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為2,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過(guò)橢圓左焦點(diǎn)的直線交橢圓于兩點(diǎn),點(diǎn)在軸非負(fù)半軸上,且點(diǎn)到坐標(biāo)原點(diǎn)的距離為2,求取得最大值時(shí)的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和,對(duì)任意,都有(為常數(shù)).
(1)當(dāng)時(shí),求;
(2)當(dāng)時(shí),
(。┣笞C:數(shù)列是等差數(shù)列;
(ⅱ)若對(duì)任意,必存在使得,已知,且,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某企業(yè)近3年的前7個(gè)月的月利潤(rùn)(單位:百萬(wàn)元)如下面的折線圖所示:
(1)試問(wèn)這3年的前7個(gè)月中哪個(gè)月的月平均利潤(rùn)最高?
(2)通過(guò)計(jì)算判斷這3年的前7個(gè)月的總利潤(rùn)的發(fā)展趨勢(shì);
(3)試以第3年的前4個(gè)月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測(cè)第3年8月份的利潤(rùn).
月份x | 1 | 2 | 3 | 4 |
利潤(rùn)y(單位:百萬(wàn)元) | 4 | 4 | 6 | 6 |
相關(guān)公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】多面體歐拉定理是指對(duì)于簡(jiǎn)單多面體,其各維對(duì)象數(shù)總滿足一定的數(shù)量關(guān)系,在三維空間中,多面體歐拉定理可表示為:頂點(diǎn)數(shù)+表面數(shù)-棱長(zhǎng)數(shù)=2.在數(shù)學(xué)上,富勒烯的結(jié)構(gòu)都是以正五邊形和正六邊形面組成的凸多面體,例如富勒烯(結(jié)構(gòu)圖如圖)是單純用碳原子組成的穩(wěn)定分子,具有60個(gè)頂點(diǎn)和32個(gè)面,其中12個(gè)為正五邊形,20個(gè)為正六邊形.除外具有封閉籠狀結(jié)構(gòu)的富勒烯還可能有,,,,,,,等,則結(jié)構(gòu)含有正六邊形的個(gè)數(shù)為( )
A.12B.24C.30D.32
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn),()在曲線C:上,直線l過(guò)點(diǎn)且與垂直,垂足為P.
(Ⅰ)當(dāng)時(shí),求在直角坐標(biāo)系下點(diǎn)P坐標(biāo)和l的方程;
(Ⅱ)當(dāng)M在C上運(yùn)動(dòng)且P在線段上時(shí),求點(diǎn)P在極坐標(biāo)系下的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·衢州調(diào)研)已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點(diǎn)M是頂點(diǎn)P在底面ABCD的射影,N是PC的中點(diǎn).
(1)求證:平面MPB⊥平面PBC;
(2)若MP=MC,求直線BN與平面PMC所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com