【題目】已知橢圓的離心率為,且經(jīng)過點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓的上、下頂點分別為, 點是橢圓上異于的任意一點, 軸, 為垂足, 為線段中點,直線交直線于點, 為線段的中點,若四邊形的面積為,求直線的方程.
【答案】(Ⅰ);(Ⅱ).
【解析】
(Ⅰ)由離心率得,再把已知點的坐標(biāo)代入,結(jié)合聯(lián)立后可解得,得橢圓方程;
(Ⅱ)設(shè),得點坐標(biāo),寫出方程,求得點坐標(biāo),又可得點坐標(biāo),利用斜率相等求出與軸交點的坐標(biāo),利用可求得點坐標(biāo),從而得直線方程.
(Ⅰ)由題意,解得,
所以橢圓的標(biāo)準(zhǔn)方程為.
(Ⅱ)設(shè),則,且.因為為線段中點,
所以.又,所以直線的方程為.
因為 令,得即.又,為線段的中點,有.
設(shè)直線與軸交于,
由得:,∴,
∴.
又,∴,
解得:,代入橢圓方程得:,∵,∴,
∴直線的方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】半正多面體亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對稱美.如圖,將正方體沿交于一頂點的三條棱的中點截去一個三棱錐,如此共可截去八個三棱錐,得到一個有十四個面的半正多面體,它們的棱長都相等,其中八個為正三角形,六個為正方形,稱這樣的半正多面體為二十四等邊體.一個二十四等邊體的各個頂點都在同一個球面上,若該球的表面積為,則該二十四等邊體的表面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體的棱長為2,點,,分別為棱,,的中點,下列結(jié)論中,其中正確的個數(shù)是( )
①過,,三點作正方體的截面,所得截面為正六邊形;
②平面;
③平面;
④異面直線與所成角的正切值為;
⑤四面體的體積等于
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果某企業(yè)每月生豬的死亡率不超過百分之一,則該企業(yè)考核為優(yōu)秀.現(xiàn)獲得某企業(yè)2019年1月到8月的相關(guān)數(shù)據(jù)如下表所示:
月份 | 1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 |
月養(yǎng)殖量/千只 | 3 | 4 | 5 | 6 | 7 | 9 | 10 | 12 |
月利潤/十萬元 | 3.6 | 4.1 | 4.4 | 5.2 | 6.2 | 7.5 | 7.9 | 9.1 |
生豬死亡數(shù)最/只 | 29 | 37 | 49 | 53 | 77 | 98 | 126 | 145 |
(1)求出月利潤;y(十萬元)關(guān)于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.01);
(2)若2019年9月份該企業(yè)月養(yǎng)殖量為1.4萬只,請你預(yù)估該月月利潤是多少萬元;
(3)從該企業(yè)2019年1月到8月這8個月中任意選取3個月,用X表示3個月中該企業(yè)考核獲得優(yōu)秀的個數(shù),求X的分布列和數(shù)學(xué)期望./p>
參考數(shù)據(jù):,,,
附:線性回歸方程中,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,沿其對角線BD將折起至,使得點在平面ABCD內(nèi)的射影恰為點B,點E為的中點.
(Ⅰ)求證:平面BDE;
(Ⅱ)若,求與平面BDE所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人玩擲正方體骰子走跳棋的游戲,已知骰子每面朝上的概率都是,棋盤上標(biāo)有第0站,第1站,第2站,……,第100站.一枚棋子開始在第0站,選手每擲一次骰子,棋子向前跳動一次,若擲出朝上的點數(shù)為1或2,棋子向前跳兩站;若擲出其余點數(shù),則棋子向前跳一站,直到跳到第99站或第100站時,游戲結(jié)束;設(shè)游戲過程中棋子出現(xiàn)在第站的概率為.
(1)當(dāng)游戲開始時,若拋擲均勻骰子3次后,求棋子所走站數(shù)之和X的分布列與數(shù)學(xué)期望;
(2)證明:;
(3)若最終棋子落在第99站,則記選手落敗,若最終棋子落在第100站,則記選手獲勝,請分析這個游戲是否公平.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面四邊形中,為的中點,,,且.將此平面四邊形沿折成直二面角,連接、、.
(Ⅰ)證明:平面平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,上頂點為A,右頂點為B.點在橢圓C內(nèi),且直線與直線垂直.
(1)求C的方程;
(2)設(shè)過點P的直線交C于M,N兩點,求證:以為直徑的圓過點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻).若從八卦中任取兩卦,這兩卦的六個爻中恰有一個陽爻的概率為( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com