【題目】隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式.某機(jī)構(gòu)對“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在[55,65)的概率.
參考數(shù)據(jù)如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值: (其中)
【答案】(Ⅰ)列聯(lián)表見解析,有的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);(Ⅱ).
【解析】試題分析:
(Ⅰ)由所給數(shù)據(jù)可以計算出年齡不低于45歲和年齡低于45歲的的人中贊成、不贊成的人數(shù),從而可得列聯(lián)表,再由所給公式計算可知有無把握;
(Ⅱ)由分層抽樣知區(qū)間上有2人,區(qū)間上有4人,把這6人分別編號后,可列舉出任取3人的各種組合,分別計算后可得所求概率.
試題解析:
(Ⅰ)根據(jù)條件得列聯(lián)表:
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成 | 10 | 27 | 37 |
不贊成 | 10 | 3 | 13 |
合計 | 20 | 30 | 50 |
根據(jù)列聯(lián)表所給的數(shù)據(jù)代入公式得到:
所以有的把握認(rèn)為“使用微信交流”的態(tài)度與人的年齡有關(guān);
(Ⅱ)解:
按照分層抽樣方法可知:
[55,65)(歲)抽取:(人);
[25,35)(歲)抽取:(人)
解:在上述抽取的6人中, 年齡在[55,65)(歲)有2人,年齡[25,35)(歲)有4人。
年齡在[55,65)(歲)記為;年齡在[25,35)(歲)記為, 則從6人中任取3名的所有情況為: 、、、、、、、、、、、、、、、、 共20種情況,
其中至少有一人年齡在[55,65)歲情況有:、、、、、、、、、、、、、、、,共16種情況。
記至少有一人年齡在[55,65)歲為事件,則
∴至少有一人年齡在[55,65)歲之間的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱ABC-A1B1C1,點N在AC上且CN=3AN,點M,P,Q分別是AA1,A1B1,BC的中點.求證:直線PQ∥平面BMN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱錐P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.求二面角P—BC—D余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一家醫(yī)藥研究所,從中草藥中提取并合成了甲、乙兩種抗“病毒”的藥物,經(jīng)試驗,服用甲、乙兩種藥物痊愈的概率分別為.現(xiàn)已進(jìn)入藥物臨床試用階段,每個試用組由4位該病毒的感染者組成,其中2人試用甲種抗病毒藥物,2人試用乙種抗病毒藥物,如果試用組中,甲種抗病毒藥物治愈人數(shù)超過乙種抗病毒藥物的治愈人數(shù),則稱該組為“甲類組”.
(1)求一個試用組為“甲類組”的概率;
(2)觀察3個試用組,用表示這3個試用組中“甲類組”的個數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分15分)在直三棱柱中,底面是邊長為2的正三角形, 是棱的中點,且.
(1)試在棱上確定一點,使平面;
(2)當(dāng)點在棱中點時,求直線與平面所成角的大小的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點與拋物線的焦點重合,且點到直線的距離為, 與的公共弦長為.
(1)求橢圓的方程及點的坐標(biāo);
(2)過點的直線與交于兩點,與交于兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科技興趣小組對晝夜溫差的大小與小麥新品種發(fā)芽多少之間的關(guān)系進(jìn)行了研究,記錄了2016年12月1日至12月5日五天的晝夜溫差與相應(yīng)每天100顆種子的發(fā)芽得到了如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 9 | 11 | 10 | 12 | 13 |
發(fā)芽數(shù)(顆) | 21 | 34 | 26 | 36 | 40 |
現(xiàn)從這5組數(shù)據(jù)中任選兩組,用余下的三組數(shù)據(jù)求回歸直線方程,再對被選取的兩組數(shù)據(jù)進(jìn)行檢驗.
(Ⅰ)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天的概率;
(Ⅱ)若選取的是12月1日和12月5日的兩組數(shù)據(jù),請根據(jù)余下的三組數(shù)據(jù),求出與的線性回歸直線方程;
(Ⅲ)若由線性回歸直線方程得到的估計值與所選出的兩組實際數(shù)據(jù)的誤差均不超過兩顆,則認(rèn)為得到的回歸直線方程是可靠的,試判斷(Ⅱ)中得到的線性回歸直線方程是否可靠.
附:在線性回歸方程中,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com