設正四棱錐的側面積為,若

(1)求四棱錐的體積;
(2)求直線與平面所成角的大小.

(1)
(2))

解析試題分析:解(1)聯(lián)結,取的中點,聯(lián)結,,則,.      4分
所以四棱錐的體積.     6分
(2)在正四棱錐中,
平面,所以就是直線與平面所成的角.      11分
中,,所以直線與平面所成角的大小為.   14分
考點:四棱錐的體積,線面角
點評:主要是考查了四棱錐體積的求解以及線面角的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在長方體中,,,是線段的中點.
(Ⅰ)求證:平面;
(Ⅱ)求平面把長方體 分成的兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是圓的直徑,點在圓上,于點,
平面,
(1)證明:;
(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖, 平面平面, 是以為斜邊的等腰直角三角形, 分別為, , 的中點, ,

(1) 設的中點, 證明:平面;
(2) 證明:在內(nèi)存在一點, 使平面, 并求點, 的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,,,分別為的中點.

(Ⅰ)求證:;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在邊長為1的等邊三角形中,分別是邊上的點,,的中點,交于點,將沿折起,得到如圖所示的三棱錐,其中

(1) 證明://平面;
(2) 證明:平面
(3) 當時,求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在四棱錐中,側面底面,底面是直角梯形,,,,.

(Ⅰ)求證:平面
(Ⅱ)設為側棱上一點,,試確定的值,使得二面角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,底面為正方形,,
平面為棱的中點.

(1)求證:平面平面;
(2)求二面角的余弦值.
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形, AF∥DE,AF⊥FE,AF=AD=2 DE=2.

(Ⅰ) 求異面直線EF與BC所成角的大小;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為,求AB的長.

查看答案和解析>>

同步練習冊答案