【題目】已知拋物線上一點到其準線的距離為.

1)求拋物線的方程;

2)如圖、、為拋物線上三個點,,若四邊形為菱形,求四邊形的面積.

【答案】1;(2.

【解析】

1)利用拋物線的定義求出的值,進而可得出拋物線的方程;

2)設(shè)點、,并設(shè)菱形的中心為,分軸和軸不垂直兩種情況討論,在軸時,求出,進而可求得菱形的面積,在軸不垂直時,設(shè)直線方程,可求得點的坐標,由此得出點的坐標,結(jié)合已知條件求出的值,進而求得,由此得出菱形的面積.

1)由已知可得,得,拋物線的方程為;

2)設(shè),菱形的中心

軸,則在原點,,

此時,,菱形的面積;

軸不垂直時,設(shè)直線方程,則直線的斜率為

聯(lián)立,消去

所以,,

所以,,

的中點,,

在拋物線上,且直線的斜率為.

解得:,

,,,

.

綜上,.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

(Ⅰ)求直線的普通方程和曲線的直角坐標方程;

(Ⅱ)設(shè)為曲線上的點,,垂足為,若的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:

研發(fā)費用(百萬元)

2

3

6

10

13

15

18

21

銷量(萬盒)

1

1

2

2.5

3.5

3.5

4.5

6

1)根據(jù)數(shù)據(jù)用最小二乘法求出的線性回歸方程(系數(shù)用分數(shù)表示,不能用小數(shù));

2)該藥企準備生產(chǎn)藥品的三類不同的劑型,,并對其進行兩次檢測,當?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,第二次檢測時,三類劑型,合格的概率分別為,.兩次檢測過程相互獨立,設(shè)經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的分布列與數(shù)學期望.

附:(12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的標準方程是,設(shè)是橢圓的左焦點,為直線上任意一點,過的垂線交橢圓于點,.

1)證明:線段平分線段(其中為坐標原點);

2)當最小時,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱(側(cè)棱垂直于底面,且底面三角形是等邊三角形)中,,分別是的中點.

1)求證:平面∥平面;

2)在線段上是否存在一點使平面?若存在,確定點的位置;若不存在,也請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4—4:坐標系與參數(shù)方程]

以平面直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數(shù)方程是 (t為參數(shù)),圓C的極坐標方程是ρ=4cos θ,求直線l被圓C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的離心率是,過點做斜率為的直線,橢圓與直線交于兩點,當直線垂直于軸時

(Ⅰ)求橢圓的方程;

(Ⅱ)當變化時,在軸上是否存在點,使得是以為底的等腰三角形,若存在求出的取值范圍,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年春節(jié)期間全國流行在微信群里發(fā)、搶紅包,現(xiàn)假設(shè)某人將688元發(fā)成手氣紅包50個,產(chǎn)生的手氣紅包頻數(shù)分布表如表:

I)求產(chǎn)生的手氣紅包的金額不小于9元的頻率;

)估計手氣紅包金額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

)在這50個紅包組成的樣本中,將頻率視為概率.

i)若紅包金額在區(qū)間[21,25]內(nèi)為最佳運氣手,求搶得紅包的某人恰好是最佳運氣手的概率;

ii)隨機抽取手氣紅包金額在[1,5)∪[21,25]內(nèi)的兩名幸運者,設(shè)其手氣金額分別為m,n,求事件“|mn|16”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】明代商人程大位在公元1592年編撰完成《算法統(tǒng)宗》一書.書中有如下問題:今有女子善織,初日遲,次日加倍,第三日轉(zhuǎn)速倍增,第四日又倍增,織成絹六丈七尺五寸.問各日織若干?意思是:有一位女子善于織布,第一天由于不熟悉有點慢,第二天起每天織的布都是前一天的2倍,已知她前四天共織布675寸,問這位女子每天織布多少?根據(jù)文中的已知條件,可求得該女了第一天織布________尺,若織布一周(7天),共織________.(其中1丈為10尺,1尺為10寸)

查看答案和解析>>

同步練習冊答案