【題目】已知橢圓的標準方程是,設是橢圓的左焦點,為直線上任意一點,過的垂線交橢圓于點,.

1)證明:線段平分線段(其中為坐標原點);

2)當最小時,求點的坐標.

【答案】1)證明見解析;(2.

【解析】

1)由橢圓的標準方程可得的坐標,設點坐標為,可得直線的斜率,討論兩種情況,設直線的方程是,;聯(lián)立直線與橢圓方程,即可用表示點的坐標,即可證明結論.

2)由(1)結合弦長公式,表示出,即可得,結合基本不等式即可求得最小值及最小值時的值,進而得點的坐標.

1)證明:橢圓的標準方程是,

是橢圓的左焦點,為直線上任意一點,

所以得坐標為,設點坐標為

則直線的斜率,

時,直線的斜率

直線的方程是,

時,直線的方程,

也符合方程的形式,

,將直線的方程與橢圓的方程聯(lián)立得:

消去,

的中點的坐標為,

,

所以直線的斜率,又因為直線的斜率,

所以點在直線上,因此線段平分線段.

2)由(1)知,,

所以

當且僅當,

時等號成立,此時取得最小值,

點的坐標為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校在一塊圓心角為,半徑等于的扇形空曠地域(如圖)組織學生進行野外生存訓練,已知在O,A,B處分別有50名,150名,100名學生,現(xiàn)要在道路OB(包括O,B兩點)上設置集合地點P,要求所有學生沿最短路徑到P點集合,則所有學生行進的最短總路程為_____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】微信運動,是由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.用戶可以通過關注微信運動公眾號查看自己每天或每月行走的步數(shù),同時也可以和其他用戶進行運動量的或點贊.加入微信運動后,為了讓自己的步數(shù)能領先于朋友,人們運動的積極性明顯增強,下面是某人20181月至201811月期間每月跑步的平均里程(單位:十公里)的數(shù)據(jù),繪制了下面的折線圖.

根據(jù)折線圖,下列結論正確的是(

A. 月跑步平均里程的中位數(shù)為月份對應的里程數(shù)

B. 月跑步平均里程逐月增加

C. 月跑步平均里程高峰期大致在、

D. 月至月的月跑步平均里程相對于月至月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在①成等差數(shù)列;②成等比數(shù)列;③三個條件中任選一個,補充在下面的問題中,并加以解答.

已知的內(nèi)角所對的邊分別是,面積為.若__________,且,試判斷的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱柱中,平面,,,,,為棱的中點

1)證明:;

2)設點在線段上,且直線與平面所成角的正弦值為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要得到函數(shù)的圖象,需將函數(shù)的圖象上所有的點(

A.向右平移個單位長度后,再將圖象上所有點的橫坐標縮小到原來的,縱坐標不變

B.向左平移個單位長度后,再將圖象上所有點的橫坐標縮小到原來的,縱坐標不變

C.向左平移個單位長度后,再將圖象上所有點的橫坐標伸長到原來的2倍,縱坐標不變

D.向右平移個單位長度后,再將圖象上所有點的橫坐標伸長到原來的2倍,縱坐標不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上一點到其準線的距離為.

1)求拋物線的方程;

2)如圖、為拋物線上三個點,,若四邊形為菱形,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某景區(qū)平面圖如圖1所示,為邊界上的點.已知邊界是一段拋物線,其余邊界均為線段,且,拋物線頂點的距離.以所在直線為軸,所在直線為軸,建立平面直角坐標系.

1)求邊界所在拋物線的解析式;

2)如圖2,該景區(qū)管理處欲在區(qū)域內(nèi)圍成一個矩形場地,使得點在邊界上,點在邊界上,試確定點的位置,使得矩形的周長最大,并求出最大周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市對一項惠民市政工程滿意程度(分值:分)進行網(wǎng)上調(diào)查,有2000位市民參加了投票,經(jīng)統(tǒng)計,得到如下頻率分布直方圖(部分圖):

現(xiàn)用分層抽樣的方法從所有參與網(wǎng)上投票的市民中隨機抽取位市民召開座談會,其中滿意程度在的有5人.

1)求的值,并填寫下表(2000位參與投票分數(shù)和人數(shù)分布統(tǒng)計);

滿意程度(分數(shù))

人數(shù)

2)求市民投票滿意程度的平均分(各分數(shù)段取中點值);

3)若滿意程度在5人中恰有2位為女性,座談會將從這5位市民中任選兩位發(fā)言,求男性甲或女性乙被選中的概率.

查看答案和解析>>

同步練習冊答案