【題目】以下利用斜二測畫法得到的結(jié)論,其中正確的是( )
A.相等的角在直觀圖中仍相等B.相等的線段在直觀圖中仍相等
C.平行四邊形的直觀圖是平行四邊形D.菱形的直觀圖是菱形
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“中學(xué)生詩詞大賽”,分初賽和復(fù)賽兩個階段進(jìn)行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.則獲得復(fù)賽資格的人數(shù)為( )
A. 520 B. 540 C. 620 D. 640
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(Ⅰ)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)在區(qū)間上的最大值為,最小值為,令,求的解析式及其最小值(注:為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若是的一個極值點(diǎn),求函數(shù)表達(dá)式, 并求出的單調(diào)區(qū)間;
(Ⅱ)若,證明當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·石家莊一模)祖暅?zhǔn)悄媳背瘯r期的偉大數(shù)學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平面的任何一個平面所截,如果截面面積都相等,那么這兩個幾何體的體積一定相等.現(xiàn)有以下四個幾何體:圖①是從圓柱中挖去一個圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺和半球,則滿足祖暅原理的兩個幾何體為( )
A. ①② B. ①③
C. ②④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的等腰梯形ABCD中,,,E為CD中點(diǎn).若沿AE將三角形DAE折起,并連接DB,DC,得到如圖所示的幾何體D-ABCE,在圖中解答以下問題:
(1)設(shè)G為AD中點(diǎn),求證:平面GBE;
(2)若平面平面ABCE,且F為AB中點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從含有兩件正品a1,a2和一件次品b1的3件產(chǎn)品中每次任取1件,
每次取出后不放回,連續(xù)取兩次.
(1)求取出的兩件產(chǎn)品中恰有一件次品的概率;
(2)如果將“每次取出后不放回”這一條件換成“每次取出后放回”,則取出的兩件產(chǎn)品中恰有一件次品的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在原點(diǎn),焦點(diǎn)在軸上,離心率,點(diǎn)分別為橢圓的左右焦點(diǎn),過右焦點(diǎn)且垂直于長軸的弦長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓左焦點(diǎn)作直線,交橢圓于兩點(diǎn),若,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,且,
(1)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)記,求;
(3)是否存在實(shí)數(shù)k,使得對任意都成立?若存在,求實(shí)數(shù)k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com