已知,,
(1)當(dāng)時(shí),試比較的大小關(guān)系;
(2)猜想的大小關(guān)系,并給出證明.

(1),;(2)猜想:對(duì)一切,,證明詳見解析.

解析試題分析:(1)由的公式分別計(jì)算出時(shí)的的值,進(jìn)而可得比較它們的大小關(guān)系;(2)用數(shù)學(xué)歸納法證明,由(1)可知,時(shí),不等式顯然成立,接著假設(shè)時(shí)不等式成立,進(jìn)而只須證明時(shí)不等式也成立即可,在證明時(shí),又只須將變形為,之后只須用比較法比較判斷大小,即可證明本題.
(1) 當(dāng)時(shí),,,所以             1分
當(dāng)時(shí),,,所以               2分
當(dāng)時(shí),,,所以             4分
(2) 由(1),猜想,下面用數(shù)學(xué)歸納法給出證明           6分
①當(dāng)時(shí),不等式顯然成立                       7分
②假設(shè)當(dāng)時(shí)不等式成立,即          9分
那么,當(dāng)時(shí),          11分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e4/3/btgl7.png" style="vertical-align:middle;" /> 14分
所以      15分
由①、②可知,對(duì)一切,都有成立      16分.
考點(diǎn):數(shù)學(xué)歸納法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(設(shè)數(shù)列的前項(xiàng)和為,且滿足
(1)求,,的值并寫出其通項(xiàng)公式;
(2)用三段論證明數(shù)列是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是一個(gè)自然數(shù),的各位數(shù)字的平方和,定義數(shù)列是自然數(shù),,).
(1)求,;
(2)若,求證:;
(3)求證:存在,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,已知,().
(1)當(dāng),時(shí),分別求的值,判斷是否為定值,并給出證明;
(2)求出所有的正整數(shù),使得為完全平方數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,(-1),即當(dāng)(k∈N*)時(shí),an=(-1)k-1k,記Sn=a1+a2+…+an(n∈N*),用數(shù)學(xué)歸納法證明Si(2i+1)=-i(2i+1)(i∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn)以下四個(gè)不等式都是正確的:

;
;

請(qǐng)你觀察這四個(gè)不等式:
(1)猜想出一個(gè)一般性的結(jié)論(用字母表示);
(2)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,考查
;


歸納出對(duì)都成立的類似不等式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在平面幾何里,有:“若的三邊長分別為內(nèi)切圓半徑為,則三角形面積為”,拓展到空間,類比上述結(jié)論,“若四面體的四個(gè)面的面積分別為內(nèi)切球的半徑為,則四面體的體積為      

查看答案和解析>>

同步練習(xí)冊(cè)答案