【題目】已知函數(shù)為奇函數(shù)

(1)比較的大小,并說明理由.(提示:

(2)若,且對(duì)恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1);(2).

【解析】

試題分析:(1)由于函數(shù)為奇函數(shù),,求得為減函數(shù),通過計(jì)算證得,所以;2)利用函數(shù)的奇偶性,化簡(jiǎn)原不等式為,根據(jù)單調(diào)性和定義域,列不等式,分離參數(shù)求得參數(shù)的取值范圍.

試題解析:

(1)函數(shù)為奇函數(shù),

,,,對(duì)恒成立,,

...............2分

,

...................................4分

,

................................6分

上遞減,.............7分

(2)由為奇函數(shù)可得

,

上遞減,

對(duì)恒成立,

上遞增,,又,..........12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,,上的點(diǎn).

(1)求證: 平面平面;

(2)若的中點(diǎn),且二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線過點(diǎn)

(1)求圓的圓心坐標(biāo)和半徑;

(2)若直線與圓相切,求直線的方程;

(3)若直線與圓相交于P,Q兩點(diǎn),求三角形CPQ的面積的最大值,并求此時(shí)

直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的焦點(diǎn)在軸上.

(1)若橢圓的焦距為1,求橢圓的方程;

(2)設(shè)分別是橢圓的左、右焦點(diǎn),為橢圓上第一象限內(nèi)的點(diǎn),直線軸于點(diǎn),并且.證明:當(dāng)變化時(shí),點(diǎn)在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)有一調(diào)查小組為了解本校學(xué)生假期中白天在家時(shí)間的情況,從全校學(xué)生中抽取人,統(tǒng)計(jì)他們平均每天在家的時(shí)間在家時(shí)間在小時(shí)以上的就認(rèn)為具有屬性,否則就認(rèn)為不具有屬性

具有屬性

不具有屬性

總計(jì)

男生

20

50

70

女生

10

40

50

總計(jì)

30

90

120

1請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并通過計(jì)算判斷能否在犯錯(cuò)誤的概率不超過

的前提下認(rèn)為是否具有屬性與性別有關(guān)?

2采用分層抽樣的方法從具有屬性的學(xué)生里抽取一個(gè)人的樣本,其中男生和女生各多少人?

人中隨機(jī)選取人做進(jìn)一步的調(diào)查,求選取的人至少有名女生的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

5.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,橢圓與軸與左點(diǎn)與點(diǎn)的距離為

(1)求橢圓方程;

(2)過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),當(dāng)面積為時(shí),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為橢圓左、右焦點(diǎn),點(diǎn)在橢圓上,且軸,的周長(zhǎng)為6.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)是橢圓上異于點(diǎn)的兩個(gè)動(dòng)點(diǎn),如果直線與直線的傾斜角互補(bǔ),證明:直線的斜率為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)鋁合金窗分為上、下兩欄,四周框架和中間隔檔的材料為鋁合金,寬均為6,上欄與下欄的框內(nèi)高度(不含鋁合金部分)的比為1:2,此鋁合金窗占用的墻面面積為28800,設(shè)該鋁合金窗的寬和高分別為,鋁合金窗的透光部分的面積為.

(1)試用表示;

(2)若要使最大,則鋁合金窗的寬和高分別為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四棱錐中,底面是正方形,

1)如圖2,設(shè)點(diǎn)的中點(diǎn),點(diǎn)的中點(diǎn),求證: 平面;

2)已知網(wǎng)格紙上小正方形的邊長(zhǎng)為,請(qǐng)你在網(wǎng)格紙上用粗線畫圖1中四棱錐的府視圖(不需要標(biāo)字母),并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案