精英家教網 > 高中數學 > 題目詳情

【題目】已知在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,圓錐曲線C的極坐標方程為ρ2= ,F1是圓錐曲線C的左焦點.直線l: (t為參數).
(1)求圓錐曲線C的直角坐標方程和直線l的直角坐標方程;
(2)若直線l與圓錐曲線C交于M,N兩點,求|F1M|+|F1N|.

【答案】
(1)解:∵ρsinθ=y,ρ2= ,

∴ρ2sin2θ+3ρ2=12,

∴y2+3x2+3y2=12,

∴圓錐曲線c的普通方程為 ,

由直線l: (t為參數),消t得 ,

所以直線l的直角坐標方程 ,


(2)解:將直線l的參數方程 (m為參數),代入橢圓方程得:5m2﹣4m﹣12=0,

所以,m1+m2= ,m1m2=﹣

所以,|F1M|+|F1N|=|m1|+|m2|=|m1﹣m2|= =


【解析】(1)根據極坐標和直角坐標以及參數方程的定義即可求出;(2)先化為參數方程,再根據韋達定理即可求出|F1M|+|F1N|.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在四棱柱中, 底面,四邊形是邊長為的菱形, 分別是的中點,

(Ⅰ)求證: 平面

(Ⅱ)求二面角的余弦值;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx﹣ax,(a∈R)
(1)若函數f(x)在點區(qū)間[e,+∞]處上為增函數,求a的取值范圍;
(2)若函數f(x)的圖象在點x=e(e為自然對數的底數)處的切線斜率為3,且k∈Z時,不等式 k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值;
(3)n>m≥4時,證明:(mnnm>(nmmn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某班為了提高學生學習英語的興趣,在班內舉行英語寫、說、唱綜合能力比賽,比賽分為預賽和決賽2個階段,預賽為筆試,決賽為說英語、唱英語歌曲,將所有參加筆試的同學(成績得分為整數,滿分100分)進行統(tǒng)計,得到頻率分布直方圖,其中后三個矩形高度之比依次為4:2:1,落在的人數為12人.

(Ⅰ)求此班級人數;

(Ⅱ)按規(guī)定預賽成績不低于90分的選手參加決賽,已知甲乙兩位選手已經取得決賽資格,參加決賽的選手按抽簽方式決定出場順序.

(i)甲不排在第一位乙不排在最后一位的概率;

(ii)記甲乙二人排在前三位的人數為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求函數的定義域,判斷并證明的奇偶性;

(2)判斷函數的單調性;

(3)解不等式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知:三棱錐中,側面垂直底面, 是底面最長的邊;圖1是三棱錐的三視圖,其中的側視圖和俯視圖均為直角三角形;圖2是用斜二測畫法畫出的三棱錐的直觀圖的一部分,其中點平面內.

Ⅰ)請在圖2中將三棱錐的直觀圖補充完整,并指出三棱錐的哪些面是直角三角形;

Ⅱ)設二面角的大小為,求的值;

求點到面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設命題p:實數x滿足 <0,其中a>0,命題q:實數x滿足
(1)若a=1,且p∧q為真,求實數x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某研究小組為了研究某品牌智能手機在正常使用情況下的電池供電時間,分別從該品牌手機的甲、乙兩種型號中各選取部進行測試,其結果如下:

甲種手機供電時間(小時)

乙種手機供電時間(小時)

(1)求甲、乙兩種手機供電時間的平均值與方差,并判斷哪種手機電池質量好;

(2)為了進一步研究乙種手機的電池性能,從上述部乙種手機中隨機抽取部,記所抽部手機供電時間不小于小時的個數為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點M、N分別是面對角線A1B與B1D1的中點,設 = = , =

(1)以{ , }為基底,表示向量
(2)求證:MN∥平面BCC1B1;
(3)求直線MN與平面A1BD所成角的正弦值.

查看答案和解析>>

同步練習冊答案