已知函數(shù)y=3sin     
(1)用五點法在給定的坐標(biāo)系中作出函數(shù)一個周期的圖象;
(2)求此函數(shù)的振幅、周期和初相;
(3)求此函數(shù)圖象的對稱軸方程、對稱中心.

(1)詳見解析;(2)振幅A=3,初相是-;(3)對稱軸:x=+2k;中心為

解析試題分析:(1)利用五點作圖法即可做出圖像;(2)根據(jù)周期、振幅、初相的概念即可求出結(jié)果;(3)令=+k,解出x即為對稱軸;令x-=k,解出x,即可求出對稱中心.
解:(1)列表:

x






0



2
3sin
0
3
0
-3
0
 
描點、連線,如圖所示:
                        5
(2)周期T===4,振幅A=3,初相是-.                     .8
(3)令=+k(k∈Z),
得x=2k+(k∈Z),此為對稱軸方程.
x-=k(k∈Z)得x=+2k(k∈Z).
對稱中心為 (k∈Z)                           ..12
考點:1.“五點作”圖法;2.y=Asin(ωx+φ)的函數(shù)性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

化簡:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)f (x)的最小正周期;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),求函數(shù)的最小正周期;
當(dāng)時,求函數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2014·孝感模擬)已知函數(shù)f(x)=sinωxcosωx-cos2ωx,其中ω為使f(x)能在x=時取得最大值的最小正整數(shù).
(1)求ω的值.
(2)設(shè)△ABC的三邊長a,b,c滿足b2=ac,且邊b所對的角θ的取值集合為M,當(dāng)x∈M時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)求函數(shù)的最大值和最小正周期;
(2)若為銳角,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量a=(cosωx,sinωx),b=(cosωx,cosωx),其中0<ω<2,函數(shù),其圖象的一條對稱軸為
(1)求函數(shù)的表達式及單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,S△ABC為其面積,若,b=1,,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角所對的邊分別為,且滿足.
(1)求角的大。
(2)求的最大值,并求取得最大值時角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知O為銳角△ABC的外心,AB=6,AC=10,,且2x+10y=5,則邊BC的長
為.

查看答案和解析>>

同步練習(xí)冊答案