4.已知|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=$\sqrt{3}$,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,點C在∠AOB內(nèi),且∠AOC=60°,設(shè)$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),則$\frac{m}{n}$等于( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 根據(jù)題意,建立平面直角坐標(biāo)系,用坐標(biāo)表示向量,利用∠AOC=30°,即可求得結(jié)論

解答 解:∵$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,∴$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,
建立如圖所示的平面直角坐標(biāo)系:
則$\overrightarrow{OA}$=(2,0),$\overrightarrow{OB}$=(0,$\sqrt{3}$),∵$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,
∴$\overrightarrow{OC}$=(2m,$\sqrt{3}$n),
∵∠AOC=60°,∴tan60°=$\frac{\sqrt{3}n}{2m}$=$\sqrt{3}$
∴$\frac{m}{n}$=$\frac{1}{2}$;
故選:A.

點評 本題考查向量知識的運用,考查向量的坐標(biāo)運算,考查學(xué)生的計算能力,關(guān)鍵是正確建系,利用坐標(biāo)法解答;屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.已知2a=b+c,sin2A=sinBsinC.試判斷三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知矩形BB1C1C所在平面與底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1,AB⊥AN,CB=BA=AN=$\frac{1}{2}$BB1
(1)求證:BN⊥平面C1B1N;
(2)求二面角C-C1N-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)平面上平行四邊形ABCD的四個頂點中,A、B、C所對應(yīng)的復(fù)數(shù)分別為2-3i、-2-3i、-3+2i,則D點對應(yīng)的復(fù)數(shù)是( 。
A.1+2iB.1-2iC.2-iD.2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.為了對2016年某校中考成績進行分析,在60分以上的全體同學(xué)中隨機抽取8位,他們的數(shù)學(xué)、物理、化學(xué)分?jǐn)?shù)(折算成百分制)事實上對應(yīng)如表:
學(xué)生編號12345678
數(shù)學(xué)分?jǐn)?shù)x6065707580859095
物理分?jǐn)?shù)y7277808488909395
化學(xué)分?jǐn)?shù)z6772768084879092
(1)若規(guī)定80分以上為優(yōu)秀,請?zhí)顚懭缦?×2列聯(lián)表,問是否有90%的把握認(rèn)為是否優(yōu)秀與科目有關(guān);
  優(yōu)秀 不優(yōu)秀 合計
 數(shù)學(xué)   
 物理   
 合計   
(2)用變量y與x,z與x的相關(guān)系數(shù)說明物理與數(shù)學(xué)、化學(xué)與數(shù)學(xué)的相關(guān)程度;
(3)求y與x,z與x的線性回歸方程(系數(shù)精確到0,01),當(dāng)某位同學(xué)的數(shù)學(xué)成績?yōu)?0分時,估計其物理、化學(xué)兩科的成績.
參考公式:相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}•\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,
回歸直線方程是:$\widehat{y}$=bx+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$,
參考數(shù)據(jù):$\overline{x}$=77.5,$\overline{y}$=85,$\overline{z}$=81,$\sum_{i=1}^{8}$(xi-$\overline{x}$)2≈1050,$\sum_{i=1}^{8}$(yi-$\overline{y}$)2≈456,$\sum_{i=1}^{8}$(zi-$\overline{z}$)2≈550,≈688,$\sum_{i=1}^{8}$(xi-$\overline{x}$)(zi-$\overline{z}$)≈755,$\sqrt{1050}$≈32.4,$\sqrt{456}$≈21.4,$\sqrt{550}$≈23.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.甲、乙兩名同學(xué)八次數(shù)學(xué)測試成績?nèi)缜o葉圖所示,則甲同學(xué)成績的眾數(shù)與乙同學(xué)成績的中位數(shù)依次為( 。
A.85,86B.85,85C.86,85D.86,86

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$≤φ<$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{π}{6}$對稱,且圖象上相鄰最高點的距離為π.
(1)求f(x)的解析式;
(2)將y=f(x)的圖象向右平移$\frac{π}{6}$個單位,得到g(x)的圖象若關(guān)于x的方程g(x)-(2m+1)=0在$[0,\frac{π}{2}]$上有唯一解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=x3+ax2+bx,(a,b∈R)的圖象如圖所示,它與直線y=0在原點處相切,此切線與函數(shù)圖象所圍區(qū)域(圖中陰影部分)的面積為3,則a的值為$-\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.定義A-B={x|x∈A且x∉B}.已知A={1,2},B={1,3,4},則A-B=( 。
A.{1}B.{2}C.{3,4}D.{1,2,3,4}

查看答案和解析>>

同步練習(xí)冊答案