(本題滿分15分)
為了保護環(huán)境,發(fā)展低碳經(jīng)濟,某單位在國家科研部門的支持下,采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為100元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家至少需要補貼多少元才能使該單位不虧損?
(1)最低成本為元.(2)國家每月至少補貼元,才能不虧損
解析試題分析:解:(1)由題意可知,二氧化碳的每噸平均處理成本為:
,當且僅當,即時,
才能使每噸的平均處理成本最低,最低成本為元.…………………7分
(2)設(shè)該單位每月獲利為,
則
因為,所以當時,有最大值.
故該單位不獲利,需要國家每月至少補貼元,才能不虧損.…………15分
考點:本試題考查了函數(shù)的實際運用。
點評:審清題意,將實際問題,轉(zhuǎn)換為數(shù)學表達式是解題的關(guān)鍵,同時要注意實際中的變量的取值范圍,進而結(jié)合函數(shù)或者不等式的性質(zhì)來求解最值 ,屬于中檔題。
科目:高中數(shù)學 來源: 題型:解答題
已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)減函數(shù)(Ⅰ)求函數(shù);(Ⅱ)討論的奇偶性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分13分)某工廠有214名工人, 現(xiàn)要生產(chǎn)1500件產(chǎn)品, 每件產(chǎn)品由3個A型零件與1個B型零件配套組成, 每個工人加工5個A型零件與3個B型零件所需時間相同. 現(xiàn)將全部工人分為兩組, 分別加工一種零件, 同時開始加工. 設(shè)加工A型零件的工人有x人, 在單位時間內(nèi)每人加工A型零件5k個(k∈N*), 加工完A型零件所需時間為g(x), 加工完B型零件所需時間為h (x).
(Ⅰ) 試比較與大小, 并寫出完成總?cè)蝿?wù)的時間的表達式;
(Ⅱ) 怎樣分組才能使完成任務(wù)所需時間最少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足
,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分16分)
已知,,且直線與曲線相切.
(1)若對內(nèi)的一切實數(shù),不等式恒成立,求實數(shù)的取值范圍;
(2)當時,求最大的正整數(shù),使得對(是自然對數(shù)的底數(shù))內(nèi)的任意個實數(shù)都有成立;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題13分)
已知函數(shù)
(1)若對一切實數(shù)恒成立,求實數(shù)的取值范圍.
(2)求在區(qū)間上的最小值的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
我市有甲、乙兩家乒乓球俱樂部,兩家設(shè)備和服務(wù)都很好,但收費方式不同.甲家每張球臺每小時5元;乙家按月計費,一個月中30小時以內(nèi)(含30小時)每張球臺90元,超過30小時的部分每張球臺每小時2元.小張準備下個月從這兩家中的一家租一張球臺開展活動,其活動時間不少于15小時,也不超過40小時.
(1)設(shè)在甲家租一張球臺開展活動小時的收費為元,在乙家租一張球臺開展活動小時的收費為元,試求和。
(2)問:小張選擇哪家比較合算?說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com