【題目】已知函數(shù)的極大值為,其中為自然對(duì)數(shù)的底數(shù).

1)求實(shí)數(shù)的值;

2)若函數(shù),對(duì)任意,恒成立.

i)求實(shí)數(shù)的取值范圍;

ii)證明:.

【答案】(1)(2)(iii)證明見解析

【解析】

1)求函數(shù)定義域,然后對(duì)函數(shù)求導(dǎo),根據(jù)函數(shù)單調(diào)性,得出時(shí),有極大值,即可算出實(shí)數(shù)的值.

2)(i)由(1)知,,代入中,根據(jù),整理至即對(duì)恒成立,設(shè)新函數(shù),將原問題轉(zhuǎn)化為:對(duì)恒成立,分的取值范圍分類討論即可得出實(shí)數(shù)的取值范圍.(ii)要證,

轉(zhuǎn)化為證證,整理至,設(shè)兩個(gè)新函數(shù),,分別對(duì)兩個(gè)新函數(shù)求導(dǎo),判斷單調(diào)性,即可證得成立.

解:(1的定義域?yàn)?/span>,

,

,解得:,

,解得:,

所以當(dāng),為增函數(shù),當(dāng),為減函數(shù),

所以時(shí),有極大值,

所以;

2)(i)由(1)知,,

,即對(duì)恒成立,

所以對(duì)恒成立,

對(duì)恒成立,

設(shè),則對(duì)恒成立,

,

設(shè),,

原問題轉(zhuǎn)化為:對(duì)恒成立,

①若,當(dāng)時(shí),

,

不合題意;

②若,則對(duì)恒成立,

符合題意

③若,則,

,,令,,

所以當(dāng)時(shí),為減函數(shù),

當(dāng)時(shí),為增函數(shù),

所以,

,即;

綜上.

ii)要證,

只需證,

,即,

只需證,

設(shè),,

因?yàn)?/span>

所以上單調(diào)遞減,在上單調(diào)遞增,

所以

因?yàn)?/span>恒成立,

所以上單調(diào)遞增,

所以,則,則,

由(2)可知,,所以;

所以,

,得證.

所以 成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知件次品和件正品混放在一起,現(xiàn)需要通過檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出件次品或者檢測(cè)出件正品時(shí)檢測(cè)結(jié)束.

1)求第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率;

2)已知每檢測(cè)一件產(chǎn)品需要費(fèi)用元,設(shè)表示直到檢測(cè)出件次品或者檢測(cè)出件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,的頂點(diǎn),,且、成等差數(shù)列.

1)求的頂點(diǎn)的軌跡方程;

2)直線與頂點(diǎn)的軌跡交于兩點(diǎn),當(dāng)線段的中點(diǎn)落在直線上時(shí),試問:線段的垂直平分線是否恒過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)的坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1000多年,在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵(qian du);陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉膈(bie nao)指四個(gè)面均為直角三角形的四面體.如圖在塹堵中,,.給出下列四個(gè)結(jié)論:

①四棱錐為陽馬;

②直線與平面所成角為;

③當(dāng)時(shí),異面直線所成的角的余弦值為;

④當(dāng)三棱錐體積最大時(shí),四棱錐的外接球的表面積為.

其中,所有正確結(jié)論的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行了一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定合格”“不合格兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:合格5分,不合格0.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下:

等級(jí)

不合格

合格

得分

頻數(shù)

6

a

24

b

1)由該題中頻率分布直方圖求測(cè)試成績(jī)的平均數(shù)和中位數(shù);

2)其他條件不變?cè)谠u(píng)定等級(jí)為合格的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測(cè)試得分低于80分的前提下,第2次抽取的測(cè)試得分仍低于80分的概率;

3)用分層抽樣的方法,從評(píng)定等級(jí)為合格不合格的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再?gòu)倪@10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距300千米,汽車從甲地勻速行駛到乙地,速度不超過100千米/小時(shí),已知汽車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成,可變部分與速度(千米/小時(shí))的平方成正比,比例系數(shù)為),固定部分為1000.

1)把全程運(yùn)輸成本(元)表示為速度(千米/小時(shí))的函數(shù),并指出這個(gè)函數(shù)的定義域;

2)為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,曲線C的極坐標(biāo)方程為

(Ⅰ)求直線l和曲線C的直角坐標(biāo)方程;

(Ⅱ)點(diǎn)M為曲線C上一點(diǎn),求M到直線l的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若一個(gè)函數(shù)存在極大值,且該極大值為負(fù)數(shù),則稱這個(gè)函數(shù)為“函數(shù)”.

1)判斷函數(shù)是否為“函數(shù)”,并說明理由;

2)若函數(shù)是“函數(shù)”,求實(shí)數(shù)的取值范圍;

3)已知,、,求證:當(dāng),且時(shí),函數(shù)是“函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,.

1)證明:平面;

2)若的中點(diǎn),,,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案