【題目】2020年是我國全面建成小康社會和“十三五”規(guī)劃收官之年,也是佛山在經(jīng)濟總量超萬億元新起點上開啟發(fā)展新征程的重要歷史節(jié)點.作為制造業(yè)城市,佛山一直堅持把創(chuàng)新擺在制造業(yè)發(fā)展全局的前置位置和核心位置,聚焦打造成為面向全球的國家制造業(yè)創(chuàng)新中心,走“世界科技+佛山智造+全球市場”的創(chuàng)新發(fā)展之路.在推動制造業(yè)高質(zhì)量發(fā)展的大環(huán)境下,佛山市某工廠統(tǒng)籌各類資源,進行了積極的改革探索.下表是該工廠每月生產(chǎn)的一種核心產(chǎn)品的產(chǎn)量x()(件)與相應(yīng)的生產(chǎn)總成本y(萬元)的四組對照數(shù)據(jù).
x | 5 | 7 | 9 | 11 |
y | 200 | 298 | 431 | 609 |
工廠研究人員建立了y與x的兩種回歸模型,利用計算機算得近似結(jié)果如下:
模型①:
模型②:.
其中模型①的殘差(實際值-預(yù)報值)圖如圖所示:
(1)根據(jù)殘差分析,判斷哪一個模型更適宜作為y關(guān)于x的回歸方程?并說明理由;
(2)市場前景風云變幻,研究人員統(tǒng)計歷年的銷售數(shù)據(jù)得到每件產(chǎn)品的銷售價格q(萬元)是一個與產(chǎn)量x相關(guān)的隨機變量,分布列為:
q | |||
P | 0.5 | 0.4 | 0.1 |
結(jié)合你對(1)的判斷,當產(chǎn)量x為何值時,月利潤的預(yù)報期望值最大?最大值是多少(精確到0.1)?
【答案】(1)模型①更適宜作為y關(guān)于x的回歸方程,見解析(2)產(chǎn)量為11件時,月利潤的預(yù)報期望值最大,最大值是774.8萬元.
【解析】
(1)作出模型②的殘點圖,再對比①的殘點圖分析即可.
(2)根據(jù)題意作出Y的分布列,進而得出其數(shù)學期望,再求導分析其單調(diào)性求出最大值即可.
(1)模型②的殘差數(shù)據(jù)如下表:
x | 5 | 7 | 9 | 11 |
y | 200 | 298 | 431 | 609 |
| 20 |
|
| 21 |
模型②的殘點圖如圖所示.
模型①更適宜作為y關(guān)于x的回歸方程,因為:
理由1:模型①這個4個樣本點的殘差的絕對值都比模型②的小.
理由2:模型①這4個樣本的殘差點落在的帶狀區(qū)域比模型②的帶狀區(qū)域更窄.
理由3:模型①這4個樣本的殘差點比模型②的殘差點更貼近x軸.
(2)設(shè)月利潤為Y,由題意知,則Y的分布列為:
Y | |||
P | 0.5 | 0.4 | 0.1 |
.
設(shè)函數(shù),,,
令,解得或(舍),
當時,,則單調(diào)遞增;當時,,則單調(diào)遞減.
則函數(shù)的最大值,即產(chǎn)量為11件時,月利潤的預(yù)報期望值最大,最大值是774.8萬元.
科目:高中數(shù)學 來源: 題型:
【題目】新冠病毒是一種通過飛沫和接觸傳播的變異病毒,為篩查該病毒,有一種檢驗方式是檢驗血液樣本相關(guān)指標是否為陽性,對于份血液樣本,有以下兩種檢驗方式:一是逐份檢驗,則需檢驗次.二是混合檢驗,將其中份血液樣本分別取樣混合在一起,若檢驗結(jié)果為陰性,那么這份血液全為陰性,因而檢驗一次就夠了;如果檢驗結(jié)果為陽性,為了明確這份血液究竟哪些為陽性,就需要對它們再逐份檢驗,此時份血液檢驗的次數(shù)總共為次.某定點醫(yī)院現(xiàn)取得4份血液樣本,考慮以下三種檢驗方案:方案一,逐個檢驗;方案二,平均分成兩組檢驗;方案三,四個樣本混在一起檢驗.假設(shè)在接受檢驗的血液樣本中,每份樣本檢驗結(jié)果是陽性還是陰性都是相互獨立的,且每份樣本是陰性的概率為.
(Ⅰ)求把2份血液樣本混合檢驗結(jié)果為陽性的概率;
(Ⅱ)若檢驗次數(shù)的期望值越小,則方案越“優(yōu)”.方案一、二、三中哪個最“優(yōu)”?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線,的普通方程;
(2)已知點,若曲線,交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面內(nèi)與兩定點,連線的斜率之積等于的點的軌跡,加上、兩點所成的曲線為.若曲線與軸的正半軸的交點為,且曲線上的相異兩點、滿足.
(1)求曲線的軌跡方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】盒中有形狀、大小都相同的2個紅色球和3個黃色球,從中取出一個球,觀察顏色后放回并往盒中加入同色球4個,再從盒中取出一個球,則此時取出黃色球的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的圖象在(為自然對數(shù)的底數(shù))處的切線方程;
(2)若對任意的,均有,則稱為在區(qū)間上的下界函數(shù),為在區(qū)間上的上界函數(shù).
①若,求證:為在上的上界函數(shù);
②若,為在上的下界函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且以橢圓上的點和長軸兩端點為頂點的三角形的面積的最大值為.
(1)求橢圓的方程;
(2)經(jīng)過定點的直線交橢圓于不同的兩點、,點關(guān)于軸的對稱點為,試證明:直線與軸的交點為一個定點,且(為原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),滿足,則( )
A.函數(shù)有2個極小值點和1個極大值點
B.函數(shù)有2個極大值點和1個極小值點
C.函數(shù)有可能只有一個零點
D.有且只有一個實數(shù),使得函數(shù)有兩個零點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)). 以為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,若直線與曲線交于兩點.
(1)若,求;
(2)若點是曲線上不同于的動點,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com