【題目】設m,n是不同的直線,α,β,γ是不同的平面,有以下四個命題:
①
②
③
④
其中,真命題是( )
A.①④
B.②③
C.①③
D.②④
【答案】C
【解析】解:
對于①利用平面與平面平行的性質(zhì)定理可證α∥β,α∥γ,則β∥γ,正確
對于②面BD⊥面D1C,A1B1∥面BD,此時A1B1∥面D1C,不正確
對應③∵m∥β∴β內(nèi)有一直線與m平行,而m⊥α,
根據(jù)面面垂直的判定定理可知α⊥β,故正確
對應④m有可能在平面α內(nèi),故不正確,
故選C
【考點精析】掌握命題的真假判斷與應用和平面的基本性質(zhì)及推論是解答本題的根本,需要知道兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系;如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi);過不在一條直線上的三點,有且只有一個平面;如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+mx﹣4在區(qū)間[﹣2,1]上的兩個端點處取得最大值和最小值.
(1)求實數(shù)m的所有取值組成的集合A;
(2)試寫出f(x)在區(qū)間[﹣2,1]上的最大值g(m);
(3)設h(x)=﹣ x+7,令F(m)= ,其中B=RA,若關于m的方程F(m)=a恰有兩個不相等的實數(shù)根,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】執(zhí)行如圖所示程序框圖,若輸入a,b,i的值分別為6,4,1,則輸出a和i的值分別為( )
A.2,4
B.3,4
C.2,5
D.2,6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)),記的導函數(shù)為.
(1) 證明:當時, 在上的單調(diào)函數(shù);
(2)若在處取得極小值,求的取值范圍;
(3)設函數(shù)的定義域為,區(qū)間.若在上是單調(diào)函數(shù),則稱在上廣義單調(diào).試證明函數(shù)在上廣義單調(diào).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問部分職工,根據(jù)被訪問職工對該部門的評分,繪制頻率分布直方圖(如圖所示).
(1)求頻率分布表中①、②、③位置相應數(shù)據(jù),并在答題紙上完成頻率分布直方圖;
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | [50,60) | 5 | 0.050 |
第2組 | [60,70) | ① | 0.350 |
第3組 | [70,80) | 30 | ② |
第4組 | [80,90) | 20 | 0.200 |
第5組 | [90,100] | 10 | 0.100 |
合計 | ③ | 1.00 |
(2)為進一步了解情況,該企業(yè)決定在第3,4,5組中用分層抽樣抽取5名職工進行座談,求第3,4,5組中各自抽取的人數(shù);
(3)求該樣本平均數(shù) .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =( sinx,﹣1), =(cosx,m),m∈R.
(1)若m= ,且 ∥ ,求 的值;
(2)已知函數(shù)f(x)=2( + ) ﹣2m2﹣1,若函數(shù)f(x)在[0, ]上有零點,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對兩個變量y和x進行回歸分析,得到一組樣本數(shù)據(jù):(x1 , y1),(x2 , y2),…,(xn , yn),則下列說法中不正確的是( )
A.由樣本數(shù)據(jù)得到的回歸方程 = x+ 必過樣本中心( , )
B.殘差平方和越小的模型,擬合的效果越好
C.用相關指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好
D.兩個隨機變量的線性相關性越強,相關系數(shù)的絕對值越接近于1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com