【題目】設 的內角 的對邊分別為 已知 .
(1)求角 ;
(2)若 , ,求 的面積.
科目:高中數學 來源: 題型:
【題目】已知,分別為橢圓的左、右焦點,點在橢圓上,且軸,的周長為6.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過點的直線與橢圓交于,兩點,設為坐標原點,是否存在常數,使得恒成立?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線過點且漸近線為,則下列結論正確的個數為( )
①的實軸長為;②的離心率為;
③曲線經過的一個焦點;④直線與有兩個公共點.
A.個B.個C.個D.個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
在極坐標系中,O為極點,點在曲線上,直線l過點且與垂直,垂足為P.
(1)當時,求及l的極坐標方程;
(2)當M在C上運動且P在線段OM上時,求P點軌跡的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】雙曲線經過點,兩條漸近線的夾角為,直線交雙曲線于、.
(1)求雙曲線的方程;
(2)若過原點,為雙曲線上異于、的一點,且直線、的斜率為、,證明:為定值;
(3)若過雙曲線的右焦點,是否存在軸上的點,使得直線繞點無論怎樣轉動,都有成立?若存在,求出的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數據丟失,但可以確定橫軸是從開始計數的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數據,并整理得到下表:
廣告投入 (單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益 (單位:萬元) | 2 | 3 | 2 | 7 |
由表中的數據顯示, 與之間存在著線性相關關系,請將(2)的結果填入空白欄,并求出關于的回歸直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△MBC中,MA是BC邊上的高,MA=3,AC=4,將△MBC沿MA進行翻折,使得∠BAC=90°如圖,再過點B作BD∥AC,連接AD,CD,MD且,∠CAD=30°.
(1)求證:平面MCD⊥平面MAD;
(2)求點B到平面MAD的距離.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com