橢圓
+
=1與橢圓
+
=l(l>0)有 ( )
A.相等的焦距 | B.相同的離心率 | C.相同的準線 | D.以上都不對 |
橢圓
的焦距為2,離心率為
,準線方程為
。橢圓
即
的焦距為
,離心率為
,準線方程為
。所以兩個橢圓的離心率相同,故選B
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知橢圓
(a>b>0)的離心率
,過頂點A、B的直線與原點的距離為
.
(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
,以原點為圓心,橢圓的短半軸為半徑的圓與直線
相切.
(1)求橢圓C的方程;
(2)設(shè)
軸對稱的任意兩個不同的點,連結(jié)
交橢圓
于另一點
,證明:直線
與
x軸相交于定點
;
(3)在(2)的條件下,過點
的直線與橢圓
交于
、
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)若衛(wèi)星運行軌道橢圓
的離心率為
,地
心為右焦點
,
(1)求橢圓方程 ;
(2)若P為橢圓上一動點,求
的最小值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
已知命題
:方程
表示焦點在y軸上的橢圓; 命題
:直線
與拋物線
有兩個交點
(I)若
為真命題,求實數(shù)
的取值范圍
(II)若
,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
橢圓
過點
,其左、右焦點分別為
,離心率
,
是直線
上的兩個動點,且
.
(1)求橢圓的方程; (2)求
的最小值;
(3)以
為直徑的圓
是否過定點?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若橢圓
內(nèi)有圓
,該圓的切線與橢圓交于
兩點,且滿足
(其中
為坐標原點),則
的最小值是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,在平面直角坐標系
中,橢圓
(
)被圍于由
條直線
,
所圍成的矩形
內(nèi),任取橢圓上一點
,若
(
、
),則
、
滿足的一個等式是_______________.
查看答案和解析>>