在極坐標(biāo)系中,已知圓的圓心,半徑.
(Ⅰ)求圓的極坐標(biāo)方程;
(Ⅱ)若,直線的參數(shù)方程為(為參數(shù)),直線交圓于兩點,求弦長的取值范圍.
①..②..
解析試題分析:(Ⅰ) 先建立圓的直角坐標(biāo)方程,再化成極坐標(biāo)方程,或直接建立極坐標(biāo)方程. (Ⅱ)直線參數(shù)方程中參數(shù)的幾何意義及應(yīng)用于求弦長,再運用三角函數(shù)求范圍.
試題解析:(Ⅰ)【法一】∵的直角坐標(biāo)為,
∴圓的直角坐標(biāo)方程為.
化為極坐標(biāo)方程是.
【法二】設(shè)圓上任意一點,則
如圖可得,.
化簡得 4分
(Ⅱ)將代入圓的直角坐標(biāo)方程,
得
即
有.
故,
∵,
∴ ,
即弦長的取值范圍是 10分
考點:1.極坐標(biāo)與直角坐標(biāo)之間的互化;2.極坐標(biāo)系下建立曲線方程;3.直線參數(shù)方程的應(yīng)用;4.三角函數(shù)求值域.
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,以為極點,軸非負(fù)半軸為極軸建立坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為:(為參數(shù)),兩曲線相交于兩點.
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過點的直線的參數(shù)方程為:,(t為參數(shù)),直線與曲線分別交于兩點.
(1)寫出曲線和直線的普通方程;
(2)若成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位.已知直線的參數(shù)方程為 (t為參數(shù),0<a<),曲線C的極坐標(biāo)方程為.
(I)求曲線C的直角坐標(biāo)方程;
(II)設(shè)直線l與曲線C相交于A、B兩點,當(dāng)a變化時,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為參數(shù)).以O(shè)為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓C的極坐標(biāo)方程;
(Ⅱ)直線的極坐標(biāo)方程是,射線與圓C的交點為O,P,與直線的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,直線的極坐標(biāo)方程為是上任意一點,點P在射線OM上,且滿足,記點P的軌跡為。
(Ⅰ)求曲線的極坐標(biāo)方程;
(Ⅱ)求曲線上的點到直線距離的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
坐標(biāo)系與參數(shù)方程.
在直角坐標(biāo)系xoy中,直線的參數(shù)方程為(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線交于點A、B,若點P的坐標(biāo)為,求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過點的直線的參數(shù)方程為,設(shè)直線與曲線分別交于;
(1)寫出曲線和直線的普通方程;
(2)若成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程選講.
在極坐標(biāo)系中, O為極點, 半徑為2的圓C的圓心的極坐標(biāo)為.
⑴求圓C的極坐標(biāo)方程;
⑵是圓上一動點,點滿足,以極點O為原點,以極軸為x軸正半軸建立直角坐標(biāo)系,求點Q的軌跡的直角坐標(biāo)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com