【題目】已知橢圓C的焦距為2,左頂點與上頂點連線的斜率為

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)過點Pm,0)作圓x2+y21的一條切線l交橢圓CM,N兩點,當|MN|的值最大時,求m的值.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)由題意得,解方程組即可得解;

(Ⅱ)討論切線l的斜率存在和不存在,當存在時設切線l方程為ykxm),與橢圓聯(lián)立得(1+4k2x28k2mx+4k2m240,由直線與圓相切得,再利用弦長公式表示,從而得解.

(Ⅰ)由題意可知,解之得a2,b1.故橢圓C的標準方程為

(Ⅱ)由題意知,|m|≥1,當|m|1時,

|m|1時,易知切線l的斜率存在,設切線l方程為ykxm).

,得(1+4k2x28k2mx+4k2m240

Mx1,y1),Nx2,y2),則,

由于過點Pm0)的直線l與圓x2+y21相切,得 ,;

所以

當且僅當,即時,|MN|2,即|MN|的最大值為2

m的值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.

1)寫出曲線的普通方程和直線的直角坐標方程;

2)若直線與曲線相交于、兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線距離之和的最小值為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(1) 證明:PB∥平面AEC

(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司的甲、乙兩名工程師因為工作需要,各自選購一臺筆記本電腦.該公司提供了三款筆記本電腦作為備選,這三款筆記本電腦在某電商平臺的銷量和用戶評分如下表所示:

型號

銷量(臺)

2000

2000

4000

用戶評分

8

6.5

9.5

若甲選購某款筆記本電腦的概率與對應的銷量成正比,乙選購某款筆記本電腦的概率與對應的用戶評分減去5的值成正比,且他們兩人選購筆記本電腦互不影響.

(1)求甲、乙兩人選購不同款筆記本電腦的概率;

(2)若公司給購買這三款筆記本電腦的員工一定的補貼,補貼標準如下表:

型號

補貼(千元)

3

4

5

記甲、乙兩人獲得的公司補貼之和為千元,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)準備將8本相同的書全部分配給5個不同的班級,其中甲、乙兩個班級每個班級至少2本,其它班級允許1本也沒有,則不同的分配方案共有(

A.60B.70C.82D.92

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足,,若,則下列判斷正確的是(

A.時,數(shù)列是有窮數(shù)列B.時,數(shù)列是有窮數(shù)列

C.當數(shù)列是無窮數(shù)列時,數(shù)列單調(diào)D.當數(shù)列單調(diào)時,數(shù)列是無窮數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為的正方形中,分別為,邊上的中點,現(xiàn)將點為軸旋轉至點的位置,使得為直二面角.

(1)證明:;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若曲線在點處的切線與直線平行,求的值,并求函數(shù)的單調(diào)區(qū)間;

2)當時,若對任意,都有恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案