【題目】已知函數(shù).
(1)若曲線在點處的切線與直線平行,求的值,并求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,若對任意,都有恒成立,試求實數(shù)的取值范圍.
【答案】(1),函數(shù)的遞增區(qū)間為,遞減區(qū)間為;(2).
【解析】
(1)由可求得的值,然后利用導(dǎo)數(shù)可求得函數(shù)的單調(diào)遞增區(qū)間和減區(qū)間;
(2)由題意得出對任意的恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最小值,進而可求得實數(shù)的取值范圍.
(1),定義域為,,
由題知,解得,
則,得或(舍),
令,即且,得;
令,即且,得.
所以,函數(shù)的遞增區(qū)間為,遞減區(qū)間為;
(2)當(dāng)時,對恒成立,
即,即對恒成立,
令,則,,
,令,得.
令,得;令,得.
所以,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
所以,函數(shù)在處取得極小值,亦即最小值,即,.
因此,實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的焦距為2,左頂點與上頂點連線的斜率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點P(m,0)作圓x2+y2=1的一條切線l交橢圓C于M,N兩點,當(dāng)|MN|的值最大時,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在與時都取得極值.
(1)求的值與函數(shù)的單調(diào)區(qū)間;
(2)若對,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年 份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為:
=,=-.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】政府為了穩(wěn)定房價,決定建造批保障房供給社會,計劃用萬的價格購得一塊建房用地,在該土地上建幢樓房供使用,每幢樓的樓層數(shù)相同且每層建套每套平方米,經(jīng)測算第層每平方米的建筑造價(元)與滿足關(guān)系式(其中為整數(shù)且被整除) ,根據(jù)某工程師的個人測算可知,該小區(qū)只有每幢建層時每平方米平均綜合費用才達到最低,其中每平方米.
(1)求的值;
(2)為使該小區(qū)平均每平方米的平均綜合費用控制在元以內(nèi),每幢至少建幾層?至多造幾層?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,A(﹣2,0),B(2,0),P為不在x軸上的動點,直線PA,PB的斜率滿足kPAkPB.
(1)求動點P的軌跡Γ的方程;
(2)若M,N是軌跡Γ上兩點,kMN=1,求△OMN面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com