【題目】如圖,四棱錐中,底面是邊長為2的正方形,側(cè)面底面,.
(1)求證:平面平面;
(2)當(dāng)三棱錐體積最大時,求二面角的余弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)利用面面垂直的性質(zhì)證得,利用線面垂直的性質(zhì)證得,進(jìn)而可得面,平面平面;
(2)首先由不等式證得當(dāng)時,三棱錐體積最大,然后建立空間直角坐標(biāo)系,利用空間向量來求二面角的平面角,不難求解.
(1)證明:∵側(cè)面底面,側(cè)面底面,四邊形為正方形,∴,面,∴面,
又面,∴,平面,面,∴,
,平面,∴面,面,
∴平面平面.
(2),
求三棱錐體積的最大值,只需求的最大值.
令,由(1)知,,∴,
而,當(dāng)且僅當(dāng),即時,的最大值為.
如圖所示,分別取線段,中點(diǎn),,連接,,以點(diǎn)為坐標(biāo)原點(diǎn),以,和分別作為軸,軸和軸,建立空間直角坐標(biāo)系.
由已知,所以,
令為面的一個法向量,則有,∴
易知為面的一個法向量,二面角的平面角為,為銳角
則.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在棱長為1的正方體中,點(diǎn)分別是棱的中點(diǎn),是側(cè)面內(nèi)一點(diǎn),若平面,則線段長度的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超強(qiáng)臺風(fēng)登陸海南省.據(jù)統(tǒng)計,本次臺風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元,適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:
經(jīng)濟(jì)損失4000元以下 | 經(jīng)濟(jì)損失4000元以上 | 合計 | |
捐款超過500元 | 30 | ||
捐款低于500元 | 6 | ||
合計 |
臺風(fēng)后區(qū)委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
附:臨界值表
2.072 | 2.706 | 3.841 | 5.024 | 6635 | 7.879 | 10.828 | |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)銷商第一年購買某工廠商品的單價為(單位:元),在下一年購買時,購買單價與其上年度銷售額(單位:萬元)相聯(lián)系,銷售額越多,得到的優(yōu)惠力度越大,具體情況如下表:
上一年度 銷售額/萬元 | ||||||
商品單價/元 |
為了研究該商品購買單價的情況,為此調(diào)查并整理了個經(jīng)銷商一年的銷售額,得到下面的柱狀圖.
已知某經(jīng)銷商下一年購買該商品的單價為(單位:元),且以經(jīng)銷商在各段銷售額的頻率作為概率.
(1)求的平均估計值.
(2)為了鼓勵經(jīng)銷商提高銷售額,計劃確定一個合理的年度銷售額(單位:萬元),年銷售額超過的可以獲得紅包獎勵,該工廠希望使的經(jīng)銷商獲得紅包,估計的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分別是A1B,B1C1的中點(diǎn).
(1)求證:MN//平面ACC1A1;
(2)求點(diǎn)N到平面MBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家具廠生產(chǎn)一種辦公桌,每張辦公桌的成本為100元,出廠單價為160元,該廠為鼓勵銷售商多訂購,決定一次訂購量超過100張時,每超過一張,這批訂購的全部辦公桌出廠單價降低1元.根據(jù)市場調(diào)查,銷售商一次訂購量不會超過160張.
(1)設(shè)一次訂購量為張,辦公桌的實(shí)際出廠單價為元,求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)一次性訂購量為多少時,該家具廠這次銷售辦公桌所獲得的利潤最大?其最大利潤是多少元?(該家具廠出售一張辦公桌的利潤=實(shí)際出廠單價-成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c的圖象與x軸有兩個不同的交點(diǎn),若f(c)=0且0<x<c時,f(x)>0,
(1)證明:是f(x)=0的一個根;
(2)試比較與c的大;
(3)證明:-2<b<-1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com