【題目】已知二次函數(shù)f(x)=ax2+bx+c的圖象與x軸有兩個不同的交點,若f(c)=0且0<x<c時,f(x)>0,
(1)證明:是f(x)=0的一個根;
(2)試比較與c的大小;
(3)證明:-2<b<-1.
科目:高中數(shù)學 來源: 題型:
【題目】若存在實常數(shù)k和b,使得函數(shù)F(x)和G(x)對其公共定義域上的任意實數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”,已知函數(shù)f(x)=x2(x∈R),g(x)= (x<0),h(x)=2elnx,有下列命題:
①F(x)=f(x)﹣g(x)在 內單調遞增;
②f(x)和g(x)之間存在“隔離直線”,且b的最小值為﹣4;
③f(x)和g(x)之間存在“隔離直線”,且k的取值范圍是(﹣4,0];
④f(x)和h(x)之間存在唯一的“隔離直線”y=2 x﹣e.
其中真命題的個數(shù)為(請?zhí)钏姓_命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}中,Sn是{an}的前n項和且Sn=2n﹣an ,
(1)求a1 , an;
(2)若數(shù)列{bn}中,bn=n(2﹣n)(an﹣2),且對任意正整數(shù)n,都有 ,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB= ,BC=1,P為△ABC內一點,∠BPC=90°
(1)若PB= ,求PA;
(2)若∠APB=150°,求tan∠PBA.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x-k)ex,
(1)求f(x)的單調區(qū)間;
(2)求f(x)在區(qū)間[0,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題中正確的是______.
①已知定義在R上的偶函數(shù),則;
②若函數(shù),,值域為,且存在反函數(shù),則函數(shù),與函數(shù),是兩個不同的函數(shù)﹔
③已知函數(shù),既無最大值,也無最小值;
④函數(shù)的所有零點構成的集合共有4個子集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,a,b∈R,a≠0,b≠0,f(1)= ,且方程f(x)=x有且僅有一個實數(shù)解;
(1)求a、b的值;
(2)當x∈( , ]時,不等式(x+1)f(x)>m(m﹣x)﹣1恒成立,求實數(shù)m的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com