(本小題滿分12分)如圖,三棱柱的各棱長均為2,側面底面,側棱與底面所成的角為
(1) 求直線與底面所成的角;
(2) 在線段上是否存在點,使得平面平面?若存在,求出的長;若不存在,請說明理由。
(1);(2)。

試題分析:(1)根據(jù)題意建立空間直角坐標系,然后表示平面的法向量和直線的斜向量,進而利用向量的夾角公式得到線面角的求解。
(2)假設存在點滿足題意,然后利用向量的垂直關系,得到點的坐標。
解:(1),
∵側面平面,
,,,,,
,又底面的法向量                …4分
設直線與底面所成的角為,則,∴
所以,直線與底面所成的角為.                          …6分
(2)設在線段上存在點,設=,,則
  …7分
設平面的法向量
                           …9分
設平面的法向量
                                 …10分
要使平面平面,則
                             …12分
點評:解決該試題的關鍵是合理的建立空間直角坐標系,正確的表示點的坐標,得到平面的法向量和斜向量,進而結合數(shù)量積的知識來證明垂直和求解角的問題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題8分)如圖所示,在正三棱柱中,若,,中點。

(1)證明:平面;
(2)求所成的角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知空間四邊形ABCD,M,N分別是AB,CD的中點,且AC=4,BD=6,則(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示,已知正方體(圖1)對角線長為a,沿對角面將其切割成兩塊,拼成圖2所示的幾何體,那么拼成后的幾何體的全面積為              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

把正方形ABCD沿對角線AC折起,當以A、B、C、D四點為頂點的棱錐體積最大時,直線BD和平面ABC所成的角的大小為 (       )
A.  90°          B .60°        C . 45°            D .30°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1中,M為棱AB的中點,則異面直線DM與所成角的余弦值為()
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

將半徑為R的圓面剪切去如圖中的陰影部分,沿圖所畫的線折成一個正三棱錐,這個正三棱錐的側面與底面所成的二面角的余弦值是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知正方形ABCD的邊長為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動點.
(1)設N為EF上一點,當時,有DN ∥平面AEM,求 的值;
(2)試探究點M的位置,使平面AME⊥平面AEF。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

長方體ABCD—ABCD中,,,,則點到平面的距離是(       ) 
A.B.C.D.2

查看答案和解析>>

同步練習冊答案