精英家教網 > 高中數學 > 題目詳情
已知直線交于A,B兩點,且(其中O為坐標原點),若OMABM,則點M的軌跡方程為 (   )
A.2  B. 
C.1D.4
B

試題分析:聯立直線方程與拋物線方程并整理得,

因為,所以,所以,代入數據可得,所以直線,所以直線恒過定點(2,0),
因為OMAB所以,整理得即為點M的軌跡方程.
點評:解決本小題的關鍵是根據可得,從而利用韋達定理知道,本小題運算量比較大,要仔細運算,另外要注意直線過定點問題.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,設拋物線)的準線與軸交于,焦點為;以、為焦點,離心率的橢圓與拋物線軸上方的一個交點為.

(1)當時,求橢圓的方程;
(2)在(1)的條件下,直線經過橢圓的右焦點,與拋物線交于、,如果以線段為直徑作圓,試判斷點與圓的位置關系,并說明理由;
(3)是否存在實數,使得的邊長是連續(xù)的自然數,若存在,求出這樣的實數;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的離心率為,焦點到相應準線的距離為
(1)求橢圓C的方程
(2)設直線與橢圓C交于A、B兩點,坐標原點到直線的距離為,求面積的最大值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知雙曲線-=1的右焦點為,則該雙曲線的離心率等于(   )
   B.    C.   D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

拋物線與直線交于A,B兩點,其中A點的坐標是.該拋物線的焦點為F,則(   )
A.7B.C.6D.5

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分13分)已知橢圓的左焦點的坐標為,是它的右焦點,點是橢圓上一點, 的周長等于
(1)求橢圓的方程;
(2)過定點作直線與橢圓交于不同的兩點,且(其中為坐標原點),求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知、是橢圓(a>b>0)的兩個焦點,以線段為邊作正三角形M,若邊M的中點在橢圓上,則橢圓的離心率是
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若點P在曲線C1上,點Q在曲線C2:(x-2)2y2=1上,點O為坐標原點,則的最大值是       

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若直線y=x+k與曲線x=恰有一個公共點,則k的取值范圍是___________

查看答案和解析>>

同步練習冊答案