精英家教網 > 高中數學 > 題目詳情
已知雙曲線-=1的右焦點為,則該雙曲線的離心率等于(   )
   B.    C.   D.
C

試題分析:因為雙曲線的右焦點為,所以  故  ,  即.
點評:本題考查雙曲線的幾何性質,考查雙曲線的標準方程,正確運用幾何量之間的關系是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

已知雙曲線的左右頂點分別是,點是雙曲線上異于點的任意一點。若直線的斜率之積等于2,則該雙曲線的離心率等于        

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知拋物線y2=2x的焦點是F,點P是拋物線上的動點,又有點A(3,2).
則|PA|+|PF|的最小值是       ,取最小值時P點的坐標           

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

拋物線上一點到焦點的距離為3,則點的橫坐標是           .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,以軸為始邊作兩個銳角,它們的終邊分別交單位圓于兩點.已知兩點的橫坐標分別是,

(1)求的值;(2)求的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線=1的焦點到漸近線的距離為(   )。
A.2B.2C.D.1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線交于A,B兩點,且(其中O為坐標原點),若OMABM,則點M的軌跡方程為 (   )
A.2  B. 
C.1D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

下列命題中真命題的是(  )
A.在同一平面內,動點到兩定點的距離之差(大于兩定點間的距離)為常數的點的軌跡是雙曲線
B.在平面內,F1,F2是定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則點M的軌跡是橢圓
C.“若-3<m<5則方程是橢圓”
D.在直角坐標平面內,到點和直線距離相等的點的軌跡是直線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)設為拋物線的焦點,為拋物線上任意一點,已為圓心,為半徑畫圓,與軸負半軸交于點,試判斷過的直線與拋物線的位置關系,并證明。

查看答案和解析>>

同步練習冊答案